Alternation of Generations: The Gametophyte and Sporophyte

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: A Moss Life Cycle: Dominant Gametophyte

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:21 Alternation of…
  • 3:00 The Haploid Stage
  • 4:17 The Diploid Stage
  • 6:05 Lesson Summary
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Danielle Weber

Danielle teaches high school science and has an master's degree in science education.

Even though many plants seem simple, they often have very complex life cycles. We will look at how plants alternate between different life stages as well as the terms used to describe these unique points in their life cycle.

Alternation of Generations

Illustration of diploid and haploid cells with common abbreviations
Diploid vs Haploid

Imagine if you looked exactly like your grandmother but nothing at all like your mother. In fact, your mother would only have half of the genetic information that you have. While this seems very unrealistic, it's actually how many plants reproduce by using an alternating life cycle.

This alternation of generations is a life cycle that includes both diploid and haploid multicellular stages. Most of the definition is probably unfamiliar, so let's review the terms before talking about what the cycle actually looks like. You may remember some of these terms from genetics. 'Diploid' and 'haploid' both refer to the number of copies of chromosomes. Chromosomes carry genetic information.

'Diploid' means 'two sets of chromosomes.' This is commonly abbreviated as 2n because the n stands for chromosomes and diploid cells have 2 copies. In diploid cells, one copy of the chromosome comes from each parent. For example, in humans, you get one copy of chromosomes from your mom and one copy of chromosomes from your dad. The same idea is found in plants. Each diploid cell contains one copy of chromosomes from the male parent and one copy of chromosomes from the female parent. 'Haploid' means 'one set of chromosomes.' This is commonly abbreviated as n because there's only one copy of the chromosomes.

The last vocab word we need to look at before moving on is 'multicellular.' 'Multicellular' means that it contains more than one cell. This is different from many life cycles in other organisms - such as humans - because our haploid cells are unicellular, meaning 'only one cell.' In plants, part of the life cycle is completed by multicellular haploid cells.

Garblinx example
Alternation of Generations Diagram

Let's now look at what this life cycle entails. In the future, we will look at how specific types of plants - such as ferns, gymnosperms and angiosperms - go through this alternation of generations, but it is important to first understand the basics of this life cycle pattern. First, let's look at a diagram and use this in order to go through the steps. We can see in this diagram that the life cycle is broken into n on the top and 2n on the bottom. Remember that n refers to haploid cells that only contain one copy of chromosomes and that 2n refers to diploid cells that contain two copies of chromosomes.

Because the oddity of this cycle may not be clear using n and 2n, let's look at what it might look like with a different organism. Take the Garblinx. We see here that the diploid, or 2n, organism looks like this. However, when it moves into the haploid stage, the Garblinx looks completely different! Two of these haploid organisms will get together and mate in order to produce a new 2n organism that looks similar to our first Garblinx. This Garblinx will eventually produce a new haploid organism, and so on.

You may ask why plants even bother with such an odd and complicated life cycle. First, going through a haploid-only stage allows for the weeding out or removal of bad genes. Second, going through a diploid stage allows for genetic variation. Both of these help improve the overall survival of the plant species.

The Haploid Stage

There are other terms on the diagram that are probably not familiar. Let's start with the terms found in the top section. Spores are unicellular haploid cells that divide to become multicellular. Spores are the first part of the haploid life cycle in plants. Spores start out as one cell and then go through mitosis in order to become multicellular. You may remember that mitosis is asexual reproduction that produces cells that are identical. The spores divide repeatedly, creating many identical cells that are all haploid.

Alternation of generations diagram
Gametophyte to Sporophyte Cycle

Once the cells have divided and created a multicellular structure, it is now called a gametophyte. We can see on our diagram that the gametophyte contains many of the same cells that are all haploid. A gametophyte is the multicellular haploid stage. This structure will look different depending on the type of plant, but it is always made up of many cells containing only one set of chromosomes. The gametophyte makes gametes.

Gametes are haploid cells that will unite during sexual reproduction to create a diploid cell. Gametes are often called sex cells. There are two types of gametes: egg and sperm. Eggs are the female gametes, and sperm are the male gametes. It is the same in plants and in humans. Gametophytes will produce both male and female gametes through mitosis. These sperm and egg will create the next part of the plant life cycle.

The Diploid Stage

The gametes created by the gametophyte fuse to become a diploid zygote. A zygote is simply the product of the union of haploid gametes, and it is often referred to as a fertilized egg. We can see on our diagram that the two gametes - the egg and the sperm - unite to form the first part of the 2n life cycle. While our diagram shows only one gametophyte, it is important to note that in order to improve genetic diversity, it is best if the egg and sperm come from different plants. This will allow different genes to be passed down to the next generation.

Much like the spores went through mitosis in order to become the gametophyte, the zygote will go through asexual reproduction to create a multicellular structure. The zygote creates identical cells that are all diploid, making the sporophyte. The sporophyte is the multicellular diploid stage. We can see on our diagram that the sporophyte is made up of similar cells and that they are all diploid, as it is in the 2n section of our diagram.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account