Login

Atomic and Ionic Radii: Trends Among Groups and Periods of the Periodic Table

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:13 The Size of an Atom
  • 2:14 Group Trends
  • 3:43 Periodic Trends
  • 5:11 Ionic Radii
  • 5:53 Lesson Summary
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Kristin Born

Kristin has an M.S. in Chemistry and has taught many at many levels, including introductory and AP Chemistry.

Atoms are VERY tiny. How do we measure their size? This lesson will explain how the size of an atom is measured and teach you how to predict the relative size of an atom based on where it is located on the periodic table.

The Size of an Atom

When you picture an atom, you probably see a bunch of protons and neutrons crammed together in a tiny little nucleus surrounded by a bunch of electrons zipping around the outside of a nucleus. It should make sense that the size of an atom is really dependent on how far away the electrons are - more specifically, how far away the outer electrons, or valence electrons, are. If they are zipping around really close to the nucleus in the first energy level, the atom will likely be very small, and if the valence electrons are flying around way out in the fifth energy level, the atom will be very large. The size of an atom is dependent on how much space the electrons take up.

The size of an atom depends on how much space its electrons take up.
Atom Size

But if electrons are always moving, and we never really know exactly where an electron is at any given time, how do we measure the size of an atom? You may think of an atom as being a small, hard sphere, when in reality, its outer boundaries are very difficult to define.

Measuring an atom's size is like measuring the size of a marshmallow: It depends on how it's measured. Is it apart from the rest, or is it squished into its packaging? When the size of an atom is measured, it's important to specify if it's an isolated atom, or if it's one that is bonded to something else. Typically, the atomic radius is measured as half the distance between the nuclei of two bonded atoms. This measured radius is often slightly smaller than an atom's actual radius, but because the nucleus of an atom is very well defined and easy to detect, this measurement is the most often used.

The rest of this lesson will be focused on the trends that the atoms have in size as you move down a group or across a row on the periodic table. A trend is just a tendency to change in a predictable way. We can use these trends to compare the relative sizes of two different atoms on the table.

Group Trends

Remember that a group in the periodic table is just a vertical column, so we will only be comparing elements in the same column. As you move down a group, you will notice that the principal quantum number increases by one. This means that electrons are going to be filling energy levels farther and farther away from the nucleus. You can think of energy levels like layers in an atom. As the number of protons in an atom increases, the number of electrons will also increase. These electrons need room to move around, and each energy level can only hold so many electrons. So at the start of each row on the periodic table, a new energy level has to be 'opened' for these new electrons to be added.

As you move down a group in the periodic table, the atomic radius increases.
Atomic Radius Increase

For example, if we compare elements in the first column on the periodic table, hydrogen has one electron, and it is located in the first energy level. Lithium has three electrons: two of them filling the first energy level, and one of them (the valence electron) needing to be added to the newly created second energy level. Finally, let's compare this to sodium, with 11 electrons. Two of them will fill the first level, eight will fill the second level, and one (the valence electron) will need to be added to the newly created third level. Because each added level is farther and farther away from the nucleus, the atomic radius increases as you move down a group on the periodic table.

Periodic Trends

Next, we'll compare atoms across a period. Keep in mind that as you move across a row on the periodic table, electrons in atoms will be added to existing energy levels. It's only when you move down a row that new energy levels, or layers, need to be added. So if electrons are just filling existing energy levels as you move from left to right on the table, are all atoms in a period the same size? They are not, because of one key factor: As you move from left to right on the periodic table, the atomic nucleus gains more and more protons. (Well, it gains more neutrons too, but they won't matter in this situation.)

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 49 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Click "next lesson" whenever you finish a lesson and quiz. Got It
You now have full access to our lessons and courses. Watch the lesson now or keep exploring. Got It
You're 25% of the way through this course! Keep going at this rate,and you'll be done before you know it.
1
The first step is always the hardest! Congrats on finishing your first lesson. Go to Next Lesson Take Quiz
5
Way to go! If you watch at least 30 minutes of lessons each day you'll master your goals before you know it. Go to Next Lesson Take Quiz
10
Congratulations on earning a badge for watching 10 videos but you've only scratched the surface. Keep it up! Go to Next Lesson Take Quiz
20
You've just watched 20 videos and earned a badge for your accomplishment! Go to Next Lesson Take Quiz
50
You've just earned a badge for watching 50 different lessons. Keep it up, you're making great progress! Go to Next Lesson Take Quiz
100
You just watched your 100th video lesson. You have earned a badge for this achievement! Go to Next Lesson Take Quiz
200
Congratulations! You just finished watching your 200th lesson and earned a badge! Go to Next Lesson Take Quiz
300
Congratulations! You just finished watching your 300th lesson and earned a badge! Go to Next Lesson Take Quiz
500
You are a superstar! You have earned the prestigious 500 video lessons watched badge. Go to Next Lesson Take Quiz
1K
Incredible. You have just entered the exclusive club and earned the 1000 videos watched badge. Go to Next Lesson Take Quiz
20
You have earned a badge for watching 20 minutes of lessons.
50
You have earned a badge for watching 50 minutes of lessons.
100
You have earned a badge for watching 100 minutes of lessons.
250
You have earned a badge for watching 250 minutes of lessons.
500
You have earned a badge for watching 500 minutes of lessons.
1K
You have earned a badge for watching 1000 minutes of lessons.
Support