Back To Course

Math 102: College Mathematics14 chapters | 108 lessons

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*DaQuita Hester*

DaQuita has taught high school mathematics for six years and has a master's degree in secondary mathematics education.

Understanding how to calculate the area and circumference of circles plays a vital role in some of our everyday functions. They serve as the foundation for operating with three-dimensional figures. Learn more about the area and circumference of circles in this lesson.

When was the last time you jumped on a trampoline? Did you ever wonder how much material was required for the center mat or how much steel was needed to create the frame? If you did, you may not have realized that both the mat and the frame are examples of how area and circumference of circles are used in real life. Let's take a brief look at each of these concepts and examine how they are used in both two-dimensional and three-dimensional situations.

As you may recall, **area** is the amount of space taken up by a two-dimensional figure, and it is measured in units squared. Most shapes require a formula to calculate area, and circles are no exception. To calculate the area of a circle, use the formula *A* = pi * *r*^2. In the formula, *r* represents the **radius**, which is a segment that connects the center of the circle to a point on the edge of the circle. It is half the size of the diameter, and every radius inside of a circle will be the same size. Let's take a brief look at how to calculate area of circles.

Take a look at circle 'm'. Here, we see that the diameter is 12 inches long. To calculate the area of circle 'm,' we must cut the diameter in half to determine the radius. When we divide 12 by 2, we see that the radius has a length of 6 inches. From here, we will substitute 6 into the equation to get *A* = pi * (6)^2. Remember to follow the order of operations - we must square the radius before multiplying by pi. When we do, we are able to determine that the total area of circle 'm' is 36 * pi or 113.097 inches squared.

Now, let's take a look at a real-world example. Joe is purchasing material to build his first trampoline. If he wants the diameter of the mat to be 14 feet long, how much nylon will he have to purchase?

Once again, we will cut the diameter in half to determine the radius. When we do, we will see that the radius of the mat will be 7 feet. Substituting this radius into the equation gives us *A* = pi * (7)^2. Once we complete our calculations using the order of operations, we will find that the total area of the mat is 49 * pi or 153.938 feet squared.

So, that takes care of calculating the amount of space taken up by a circle, but how can we determine the total distance around a circle? For other shapes, this is referred to as perimeter, but circles don't have actual sides like other shapes. Therefore, the term **circumference** is used. It is defined as the distance around a circle and is represented by the formula *C* = 2 * pi * *r*, where *r* is the radius.

Let's examine a few problems, beginning with Joe's trampoline. In addition to buying nylon for the mat, Joe needs to create a steel frame. With a diameter of 14 feet, how much steel must he purchase to build a frame that will enclose the entire mat?

As you recall, with a diameter of 14 feet, the radius will be 7 feet. Let's plug this into the formula for circumference. Once we do, we get 2 * pi * (7). After simplifying, we see that the circumference of the mat is 14 * pi or 43.98 feet, and that is how much steel Joe will need to purchase for the frame.

Here's one more. Clara has started her own hat decorating business. For her current design, she wants to line the brim of the hat with ribbon. If the brim has a diameter of 24 inches, how much ribbon will she need?

Since the diameter of the hat is 24 inches, we must divide this number by 2 to determine the radius. When we do, we see that the radius is 12 inches and we are ready to plug this into the formula. Doing so gives us 2 * pi * (12), which will equal 24 * pi or 75.398 inches. Therefore, she will need 75.398 inches of ribbon to line her hat.

In addition to these examples, it's important to realize that the formulas for area and circumference of circles create the foundation for calculating the surface area and volume of some three-dimensional figures, specifically cylinders, cones and spheres.

Recall that **surface area** is the amount of area taken up by each side of a figure, and **volume** is the amount of space inside of a figure, or the amount that a three-dimensional figure can hold. Let's look at each, beginning with cylinders.

The surface area of a cylinder is calculated with the formula *SA* = (2 * pi * *r*^2) + (2 * pi * *r* * *h*). In the first part of the formula, you can see the area of a circle. It is being multiplied by 2, because there are two circles that form the surface of the cylinder. In the second part of the formula, we see the circumference. It is being multiplied by the height of the cylinder to calculate the area for the rounded side of the figure.

Cylinder volume is calculated with the formula *V* = pi * *r*^2 * *h*. The area of a circle shows up here as well. This time, it's being multiplied by the height of the cylinder to determine the amount needed to fill the entire figure.

Now let's take a look at the role they play with surface area and volume of cones. Can you spot the area or circumference formula for circles?

*SA*= (pi **r***l*) + (pi **r*^2)*V*= (1/3) * pi **r*^2 **h*

In both of these formulas, we can see that the formula for the area of a circle is required.

Now, let's take a look at surface area for spheres. What formula do you see?

*SA*= 4 * pi **r*^2

Here, once again, we have the area of a circle serving as the foundation for this formula.

Without the ability to calculate the area and circumference of a circle, finding surface area and volume of cylinders, cones and spheres would not be possible.

In review, the **area** of a circle is defined as the amount of space covered by the circle and is calculated using the formula *A* = pi * *r*^2. **Circumference**, the distance around the circle, is calculated using the formula *C* = 2 * pi * *r*. For both formulas, *r* represents the radius of the circle.

From jumping on a trampoline to designing hats or baking cakes, area and circumference of circles are present in everyday life, and they form the foundation to calculate volume and surface area of cylinders, cones and spheres.

After absorbing the information in the video, students should be more confident in calculating the area, radius, and circumference of circles, cylinders, cones and spheres.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
5 in chapter 14 of the course:

Back To Course

Math 102: College Mathematics14 chapters | 108 lessons

- Go to Logic

- Go to Sets

- Properties of Shapes: Rectangles, Squares and Rhombuses 5:46
- Properties of Shapes: Triangles 5:09
- Perimeter of Triangles and Rectangles 8:54
- Area of Triangles and Rectangles 5:43
- Circles: Area and Circumference 8:21
- How to Identify Similar Triangles 7:23
- Applications of Similar Triangles 6:23
- Parallel, Perpendicular and Transverse Lines 6:06
- Types of Angles: Vertical, Corresponding, Alternate Interior & Others 10:28
- Angles and Triangles: Practice Problems 7:43
- Properties of Shapes: Circles 4:45
- Go to Geometry

- Marketing 102: Intro to Digital Marketing
- Native Son Study Guide
- UExcel Financial Accounting: Study Guide & Test Prep
- DSST Money & Banking: Study Guide & Test Prep
- DSST Management Information Systems: Study Guide & Test Prep
- Understanding Receivables in Accounting
- Liabilities in Accounting
- Inventory Management in Accounting
- The Operating Cycle in Accounting
- Information Systems, Privacy & Security
- SBEC Technology Application Standards for Teachers
- How to Find Financial Aid for Teachers
- New Mexico State Standards for Science
- ELL Services in Massachusetts
- Publications for ESL Teachers
- WIDA Can Do Descriptors for Grades 9-12
- WV Next Generation Standards for Science

- 'The Horror! The Horror!' in Heart of Darkness
- What Is Marketing Strategy? - Examples & Objectives
- Labor Rate Variance: Definition & Formula
- The Book Thief Vocabulary
- Conditions of Freedom Essay Topics
- The Quiet American Essay Topics
- Pelvic Fracture: Complications, Treatment & Recovery
- Noun-Clause Activities & Games
- Quiz & Worksheet - Symbols & Symbolism in Orwell's 1984
- Quiz & Worksheet - Analyzing the Setting of Heart of Darkness
- Quiz & Worksheet - Understanding Multidomestic Strategy
- Quiz & Worksheet - Cult Leader Description
- Quiz & Worksheet - Configuration Management Process & Tools
- Regression & Correlation Flashcards
- Statistical Calculations for Business Flashcards

- 11th Grade English: Homeschool Curriculum
- DSST Introduction to Business: Study Guide & Test Prep
- Financial Accounting: Homework Help Resource
- 10th Grade English: Tutoring Solution
- CAHSEE Math Exam: Help and Review
- Glencoe Chemistry - Matter And Change Chapter 4: The Structure of the Atom
- ACT Math - Complex Numbers: Tutoring Solution
- Quiz & Worksheet - Characteristics of Speech Sound Errors
- Quiz & Worksheet - Attribution Theory and the Principle of Locus of Control
- Quiz & Worksheet - Externalizing Behaviors
- Quiz & Worksheet - Using Radical Functions
- Quiz & Worksheet - Calculating Opportunity Cost

- Marketing Research: Definition, Purpose and Role in Marketing Strategy
- Antonio Vivaldi: Biography, Music & Facts
- Persuasive Writing Prompts: Middle School
- Typical Law School Curriculum
- Trench Warfare Lesson Plan
- Adult Education - Atlanta
- Reign of Terror Lesson Plan
- Great Depression Lesson Plan
- Creative Writing Exercises for Middle School
- Casey at the Bat Lesson Plan
- Sequence of Events Lesson Plan
- Writing Competitions for Kids

Browse by subject