Login

Cohesion in Water: Definition & Example

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Osmosis: Definition & Examples

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:00 Can Water Be Sticky?
  • 0:50 What is Cohesion in Water?
  • 1:41 Overview of an Atom
  • 2:54 Atoms in a Water Molecule
  • 4:43 Examples of Water Cohesion
  • 6:10 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Wendy McDougal

Wendy has taught high school Biology and has a master's degree in education.

Cohesion in water is the property that makes water molecules attracted to one another. Learn more about why this happens and quiz yourself at the end of the video.

Can Water Be Sticky?

There are many ways to describe water. It can be cool and refreshing in a swimming pool or warm and comforting in a bathtub. Water is thirst-quenching and life-giving. A universal solvent, it can wash away the dirt of life.

But would you ever use the word 'sticky' to describe water? Probably not. If anything, water is useful in washing stickiness away.

If you closely examine water in its smallest form of atoms and molecules, however, you'll find that it is 'sticky' in a sense. Not sticky like a child's hands after eating a lollipop, but sticky in a cohesive way. In this lesson, we'll examine cohesion in water and we'll take a closer look at the properties of water that make its molecules attracted to one another.

What Is Cohesion in Water?

Cohesion in water has to do with properties of water molecules that make them 'stick' together. To better understand water cohesion, we need to zoom in on a teaspoonful of water. In this teaspoon, there are more than a hundred drops of water. And in each individual drop, we can find millions of water molecules. But what exactly makes up a water molecule?

A molecule of water is made up of one atom of oxygen and two atoms of hydrogen. As you may already know, its molecular formula is H2O. The oxygen and hydrogen atoms are held tightly together by bonds. But once again, to fully understand water cohesion, we must zoom in even further on a water molecule to examine its smallest components, the atoms.

Overview of an Atom

An atom is the smallest building block of matter. Atoms are so tiny that they can't be seen by the naked eye. Yet, they make up every single thing in the universe. Atoms combine to form molecules, and molecules combine to form the elements that make up matter. You can think of an atom as the tiniest Lego piece in a set. If you attach several Legos together, you'll form a subunit of a larger structure. These subunits represent molecules of matter.

Atoms are composed of three smaller particles called protons, electrons, and neutrons. Protons carry a positive charge, electrons carry a negative charge, and neutrons are neutral. Neutrons and protons are found in the center, or nucleus, of the atom. Electrons are found orbiting around the nucleus so quickly that they move almost at the speed of light.

It's the electrons that are involved in the bonding, or attaching of atoms together, to make molecules. Electrons are found in different levels of orbit, depending on how many electrons are present in that atom. Sometimes atoms bond together by sharing the electrons in their outer levels. These are called covalent bonds.

Atoms in a Water Molecule

Are you wondering how this relates back to water cohesion? Let's look again at a water molecule. One oxygen atom is bonded to two hydrogen atoms. As we mentioned before, the atoms are held together by a bond. This covalent bond is created when the oxygen atom shares its outer electrons with the electrons in the two hydrogen atoms.

Although the oxygen atom is sharing electrons with the two hydrogen atoms, the electrons tend to be more attracted to the oxygen atom. This is because oxygen is more electromagnetic than hydrogen, meaning it has a stronger pull for electrons. This creates an imbalance of charge within the molecule. If you were in a boat and everyone moved to one side, the balance of the entire boat would be thrown off. Likewise, the charge on a water molecule is unbalanced as the electrons lean toward oxygen. The side of the molecule with the oxygen atom is more negative, and the side with the hydrogen molecules is more positive.

Okay, this is the part where we finally relate back to the sticky water molecules! Imagine all of those water molecules floating around together. You probably already know that opposites attract. Therefore, a negative charge attracts a positive charge. What will happen when the slightly negative side of one water molecule comes into contact with the slightly positive side of another molecule? They'll be attracted and 'stick' together! This is the whole idea behind water cohesion.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support