Login

Division and Reciprocals of Rational Expressions

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Simplifying Complex Rational Expressions

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:01 Rational Expressions
  • 0:57 Dividing a Rational
  • 2:32 Taking the Reciprocal
  • 3:34 Examples
  • 4:28 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Yuanxin (Amy) Yang Alcocer

Amy has a master's degree in secondary education and has taught math at a public charter high school.

In this video lesson, you will learn how to divide and take the reciprocal of any rational expression. Learn the one easy step you take to be able to find your answer quickly and easily.

Rational Expressions

In this video lesson, we talk about rational numbers. What are they? They are numbers that can be written as the fraction of two integers. Remember that integers are whole numbers, both positive and negative. One way to think about rational numbers is when you want to share a certain number of things with a group of people, you have to divide what you have by the number of people. The math you get is a rational number.

For example, splitting 4 donuts among 3 people gives you 4/3, which is a rational number. Rational numbers include both fractions and your whole numbers because you can rewrite your whole numbers as a fraction being divided by 1. Your rational expressions, then, are math statements with rational numbers in them. So 4/3 by itself is both a rational number and a rational expression. (4/3) / (2/3) is a rational expression because it is a math statement with rational numbers in it.

Dividing a Rational

You might be looking at that last rational expression and wondering how in the world you would evaluate that kind of problem. What you are seeing is the division of two rational numbers. In this case, we see a fraction being divided by another fraction.

How do we evaluate this kind of problem? We evaluate it by turning our division problem into a multiplication by applying the one easy step of flipping the fraction we are dividing by. In our problem, the fraction we are dividing by is 2/3. We flip it by moving the denominator to the numerator and moving the numerator to the denominator. So 2/3 flipped becomes 3/2.

Now we can change our division into multiplication. So (4/3) / (2/3) turns into (4/3) * (3/2). Do we know how to multiply fractions? Yes, we simply multiply across. We multiply the numerators together, and we multiply our denominators together. So (4/3) * (3/2) becomes 12/6. Now we look at what we got and see if we can simplify it more. Yes, we can. 12/6 simplifies to 2. Our final answer is 2.

How can we remember this process? Well, if you think of a division problem as having an upper part and a lower part, then you can think of the lower part as being opposite the upper part. If the lower part is opposite, then to fix it, we just flip everything around. What is on top goes on the bottom, and what is on the bottom goes on the top. We only do the flipping on the lower part of our division problem. After we flip, there is no need for the division because we've made things right. We can now multiply.

Taking the Reciprocal

Taking the reciprocal is very closely related to division because it is 1 divided by our number. For example, the reciprocal of 4 is 1/4. This is easy to do when we have whole numbers. But what if we have a rational number that is a fraction? How do we take the reciprocal of one of these? For example, how do we take the reciprocal of (4/3)? We use the definition of reciprocal and we do 1 divided by our number. We get 1 / (4/3).

Now what? Well, we use what we know about dividing rational numbers and we flip the bottom rational number so that we can turn our problem into a multiplication problem. We get 1 * (3/4). Our answer, then, is 3/4. The reciprocal of 4/3 is 3/4. Do you notice something interesting here? Yes; the reciprocal of our rational number is simply the flipped version. To make it easy on yourself, just remember that the reciprocal of any rational number is simply the flipped version.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support