Login

Growth Requirements of E. coli. and Auxotrophs

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Disease Control & Prevention

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:07 Extreme Bacteria
  • 0:45 E. coli
  • 1:25 Growth Factors
  • 6:15 Auxotrophs
  • 7:31 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Angela Hartsock

Angela has taught college Microbiology and has a doctoral degree in Microbiology.

Escherichia coli is a normal inhabitant of your gastrointestinal tract. In this lesson we will examine the conditions required for optimal growth of E. coli both in your colon and in culture.

Extreme Bacteria

The bacterial world is everywhere. It is amazing the places that scientists have been able to find bacteria growing and surviving - deep ocean vents, boiling hot springs, water with extremely high salt concentrations, and even in ice! These extreme environments are now known to be bustling bacterial ecosystems and illustrate how versatile and adventurous bacteria can be. But don't pack your bags, because today we will not be journeying into any of those crazy environments to learn about those cool bugs. Instead, just look down at your gut. That is the destination of our journey today.

Escherichia Coli

Escherichia coli, or E. coli for short, is a Gram-negative, rod-shaped bacteria that is a normal inhabitant of the lower gastrointestinal tract of warm-blooded animals. E. coli and mammals have been evolving together since they both appeared on Earth between 120 and 160 million years ago. You can imagine that throughout all these years, E. coli has evolved to thrive in the gut environment. As a result, the optimum growth conditions for E. coli might as well be a list of conditions in the average mammalian gut. Before we look at E. coli specifically, let's take a quick look at what all organisms need for survival.

Growth Factors

Carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur are chemical elements required to build nearly all cellular components. In addition to these major elements, elements like iron, selenium, calcium, sodium, and several others are required to build specific structures and perform specific processes. E. coli, along with all other living organisms, requires environmental sources of all of these elements in order to survive. Most of these elements come from food sources, like carbohydrates, proteins, and fats.

In addition to these building blocks are growth factors, which are essential metabolites an organism needs but is unable to synthesize. Growth factors can include amino acids, nucleotides, fatty acids, or vitamins. In history class, you might remember learning about pirates developing scurvy after long voyages at sea. Scurvy, characterized by lethargy and eventual death, is caused by a deficiency of vitamin C. Humans are unable to synthesize vitamin C and must consume it in their diet. To you and me, vitamin C is a growth factor.

The naturally occurring (wild-type) strain of E. coli doesn't require any growth factors. If given the appropriate elements and an energy source, E. coli can synthesize all 20 amino acids, all vitamins, all nucleotides, and all fatty acids that it uses during growth and metabolism. Pretty efficient, right? Well, kind of.

Despite E. coli's ability to make its own growth factors, there is an advantage to supplying them. It takes a lot of energy to produce every single growth factor needed. E coli is able to grow and reproduce much faster if these compounds are provided. To a scientist experimenting on E. coli, faster growth allows more experiments and more data. With the right conditions and a complete mix of growth factors, an E. coli population can double in size about every 20 minutes. In the colon, where E. coli has to compete for growth factors with other intestinal bacteria and the host, it can take around 12 hours for the population to double.

Now that we understand the basic element and growth factor requirements, let's move on to discussing some of the growth variables that depend on the environment and also that we can vary within the lab.

Temperature

You probably know your body temperature: 37 degrees Celsius, or a more familiar 98.6 degrees Fahrenheit. Since E. coli evolved in your colon, it isn't a stretch to find that the optimum temperature for its growth is around 37 degrees Celsius. Bacteria that thrive at these temperatures are called mesophiles. A mesophile is able to grow and divide between 10 degrees Celsius and 45 degrees Celsius. Most bacteria that live associated with mammals are mesophiles. Evolution has fine-tuned the bacteria to be able to grow best at the average temperature of its host. An E. coli cell will not die if it is removed from a 37-degree environment, but its growth rate will slow down.

Oxygen Concentration

The colon is, for the most part, an anaerobic environment. The absence of oxygen is obviously not a problem for E. coli, considering this is where it evolved to live.

But what about those deadly food-poisoning E. coli? They are usually found on the surfaces of unwashed vegetables and on contaminated beef. These areas are exposed to atmospheric oxygen concentrations. But E. coli can handle these wild swings in oxygen concentration no problem.

This is because E. coli is a facultative aerobe. This means that it is able to grow in environments with or without oxygen. While in the colon, the bacterium performs fermentation or anaerobic respiration but can switch to aerobic respiration when it is passed out of the colon and deposited on an aerobic environmental surface. As a general rule, a bacterium is able to more efficiently use its nutrients during aerobic growth and therefore generate more energy and grow faster.

pH

Another important environmental factor is pH. The average human colon has a pH between 5.5 and 7. This lines up with the optimum range of E. coli as well. The bacterium can survive between 4.4 and 9.7 but grows best right around 7, which is neutral.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support