Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Kathryn Maloney*

Kathryn teaches college math. She holds a master's degree in Learning and Technology.

Adding and subtracting rational expressions brings everything you learned about fractions into the world of algebra. We will mix common denominators with factoring and FOILing.

The word 'rational' means 'fraction.' So a rational polynomial is a fraction with polynomials in the numerator (top) and/or denominator (bottom). Here's an example of a rational polynomial:

(*x* + 4) / (*x*^2 + 3*x* + 2)

As we get started, let's remember that to add or subtract fractions, we need a common denominator. Try this mnemonic to help you remember when you need a common denominator and when you don't:

*Add Subtract Common Denominators; Multiply Divide None*

*Auntie sits counting diamonds; Mother does not.*

Let's get started!

- We need to factor.
- Find a common denominator.
- Rewrite each fraction using the common denominator.
- Put the entire numerator over the common denominator.
- Simplify the numerator.
- Factor and cancel if possible.
- Write the final answer in simplified form.

There are quite a few steps, but let me show you how they work.

Our first expression is (1 / (*x* - 2)) + (3 / (*x* + 4)).

The first step is to factor. Since we don't have anything to factor, let's move to the next step, writing down our denominators, (*x*-2) and (*x*+4). This will be our common denominator: (*x* - 2)(*x* + 4).

Now we need to create our common denominator. Let's look at our first term, (1 / (*x* - 2)). (*x* - 2) is in the denominator. We need to multiply by (*x* + 4) to make our common denominator. But if we multiply by (*x* + 4) on the bottom, we need to multiply by (*x* + 4) on the top.

For right now we are going to write it and not multiply yet.

Let's look at our second term: (3 / (*x* + 4)). The denominator is (*x* + 4). We need to multiply (*x* - 2) times (*x* + 4) to get our common denominator. But once again, if we multiply by (*x* - 2) on the bottom, we need to multiply by it on the top too.

So far, this is what we have:

((1(*x* + 4)) / ((*x* - 2)(*x* + 4))) + ((3(*x* - 2)) / ((*x* + 4)(*x* - 2)))

Don't FOIL the denominator - we may have to cancel as our final answer!

Now let's write the entire numerator over our common denominator.

(1(*x* + 4)) + 3(*x* - 2)) / ((*x* - 2)(*x* + 4))

Let's simplify the numerator.

1(*x* + 4) = *x* + 4

3(*x* - 2) = 3*x* - 6

(*x* + 4 + 3*x* - 6) / ((*x* + 4)(*x* - 2))

Collect like terms in the numerator.

(4*x* - 2) / ((*x* + 4)(*x* - 2))

Factor the numerator if possible.

4*x* - 2 = 2 (2*x* - 1)

(2(2*x* - 1)) / ((*x* + 4)(*x* - 2))

There isn't anything to slash or cancel, so we distribute and FOIL for our final answer.

(4*x* - 2) / (*x*^2 + 2*x* - 8)

((2*x*) / (*x*^2 - 16)) - (1 / (*x* + 4))

*x*^2 - 16 factors into (*x* - 4)(*x* + 4). So let's put that into the expression.

((2*x*) / ((*x* - 4)(*x* + 4))) - (1 /(*x* + 4))

Our next step is to write down all of our denominators.

In the first term, we have (*x* + 4)(*x* - 4), so we write those down.

We continue to the next term and look at the denominator. We never duplicate denominators from term to term. Since we already have (*x* + 4) written as part of our denominator, we don't need to duplicate it. So it turns out our common denominator will be (*x* + 4)(*x* - 4).

Now we need to create our common denominator. Let's look at our first term ((2*x*) / (*x* + 4)(*x* - 4)). We already have our common denominator here, so we're going to move to the next term: (1 / (*x* + 4)).

Here, we need to multiply (*x* - 4) to make our common denominator. But if we multiply (*x* - 4) on the bottom, we need to multiply by (*x* - 4) on the top. For right now, we are going to write it and not multiply yet. So we have ((2*x*) / (*x* + 4)(*x* - 4)) - (1(*x* - 4) / (*x* + 4)(*x* - 4)).

Let's write the numerator all over the denominator.

((2*x*)-1(*x*-4))/((*x*+ 4)(*x* - 4))

Simplify the numerator (or top) and rewrite it over the denominator.

Distribute the -1 into (*x* - 4) = -1*x* + 4.

Collecting like terms, 2*x* - 1*x*= *x*.

So now our expression looks like:

(*x* + 4) / (*x*+ 4)(*x*- 4)

We can slash, or cancel, (*x*+ 4) over (*x*+ 4).

This gives us 1/(*x* - 4) as our final answer.

((5*x*^2 - 3) / (*x*^2 + 6*x* + 8)) - 4

The first step is to factor.

*x*^2 + 6*x* + 8 = (*x* + 4)(*x* + 2)

Our next step is to write down all of our denominators.

In our first term, we have (*x* + 4)(*x* + 2), so we write it down.

The denominator for the next term is 1.

Therefore, our common denominator will be (*x* + 4)(*x* + 2).

Now we need to create our common denominator. Let's look at our first term (5*x*^2 - 3)/((*x* + 4)(*x* + 2)).

We already have our common denominator here, so we're going to move to the next term, 4.

Here, we only have a 1 in the denominator, so we need to multiply by (*x* + 4)(*x* + 2) over (*x*+4)(*x*+2).

This is what our new expression is going to look like:

((5*x*^2 - 3) / (*x* + 4)(*x* + 2)) - ((4 (*x* + 4)(*x* + 2)) / ((*x* + 4)(*x* + 2))) .

Let's write the whole numerator (top) over the denominator (bottom).

((5*x*^2 - 3 - 4(*x* + 4)(*x* + 2))) / ((*x* + 4)(*x* + 2))

We can now simplify the top, or numerator.

(*x*+4)(*x*+2) = *x*^2 +6*x* +8

Multiply -4( *x*^2 +6*x* +8) and we have -4*x*^2 - 24*x* - 32.

Let's continue with the numerator and collect like terms, so our expression looks like:

(*x*^2 - 24*x* - 35) / ((*x* + 4)(*x* + 2))

The numerator does not factor without using the quadratic formula, so this is almost our answer, except we need to FOIL the bottom, or denominator. Here is our final answer:

(*x*^2 - 24*x* - 35) / (*x*^2 + 6*x* + 8)

As we have seen, the process to add or subtract rational expressions is:

- We need to factor.
- Find a common denominator.
- Rewrite each fraction using the common denominator.
- Put the entire numerator over the common denominator.
- Simplify the numerator.
- Factor and cancel if possible.
- Write the final answer in simplified form.

Once you complete this lesson you'll be able to add or subtract rational expressions.

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
3 in chapter 8 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- PECT PreK-4: Practice & Study Guide
- ISEE Middle Level: Practice & Study Guide
- ISEE Lower Level: Practice & Study Guide
- ISEE Upper Level: Practice & Study Guide
- California Red Cross Nurse Assistant Competency Evaluation (CNA Test) Training
- Database Management & Data Analytics
- Impact of Lipids on Nutrition
- The Role of Vitamins in Nutrition
- How the Body Handles Nutrients
- Role of Physical Fitness in Nutrition
- What Are WIDA Standards?
- WIDA Can Do Descriptors for Kindergarten
- Demographics for English Language Learners
- Is the TAP Test Hard?
- What is Professional Development for Teachers?
- MTEL Content Test Requirements
- How to Earn Kanban Certification

- Multiple Costing: Definition & Calculation
- Brand Strength & Pricing in Hospitality & Tourism
- Classroom Activities for Introverts
- The Black Legend: Definition & History
- Bermuda Triangle Lesson Plan
- ESL Making Arrangements Vocabulary
- How to Change Your Name: Laws & Process
- Working With Linear Formulas
- Quiz & Worksheet - How Teachers & Administrators Collaborate
- Quiz & Worksheet - Using a Child's Interests to Promote Learning
- Quiz & Worksheet - Analyzing Email Campaigns
- Quiz & Worksheet - Behavioral Theories in Business Communication
- Quiz & Worksheet - Reggio Emilia Educational Approach
- Graphing & Evaluating Equations & Functions Flashcards
- Exponential & Logarithmic Function Flashcards

- 6th-8th Grade Math: Practice & Review
- Middle School Life Science Textbook
- Intro to Psychology Syllabus Resource & Lesson Plans
- Counseling Fundamentals for Teachers: Professional Development
- CSET English Subtest II: Practice and Study Guide
- Clinical Tests of the Urinary System
- Studying for Geology 101
- Quiz & Worksheet - Thin Lens Equation
- Quiz & Worksheet - Complex Subject-Verb Agreement
- Quiz & Worksheet - Calculating Cardiac Output
- Quiz & Worksheet - Cations
- Quiz & Worksheet - 5 Kinematics Quantities & the Big 5 Equations

- The Middle Ear: Structures & Functions
- Creating a Bar Graph After Gathering Data
- Is Studying Computer Science Hard?
- HRCI Online Recertification & Continuing Education Credit
- What to Do When Studying Abroad
- FSA Writing Prompts
- Major Battles & Offensives of the Vietnam War: Learning Objectives & Activities
- Independent Study Courses
- Missouri Alternative Teacher Certification
- Meiosis Lesson Plan
- Fairfield, CA Adult Education
- Success Coaching with Study.com

Browse by subject