Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Kathryn Maloney*

Kathryn teaches college math. She holds a master's degree in Learning and Technology.

Adding, subtracting and multiplying polynomials are, basically, the same as adding, subtracting and multiplying numbers. They only difference is that we have a pesky variable to worry about, but this video will show you that's no problem, so no worries! This method has worked for many of my students, and I think it will work for you, too!

Adding polynomials is very easy! There are many ways to add polynomials that have been taught, but here's my favorite. I look at the problem and put a circle, square or triangle around the like terms so I don't get them confused.

Let's look at this example.

(2*x*^2 + 3*x* + 4) + (*x*^2 - 5*x* + 7)

I like to start from the left. I circle 2*x*^2. Now, I look for another like term to 2*x*^2. Of course, that's *x*^2, so I circle it.

Then I add them: 2*x*^2 + *x*^2 is 3*x*^2, and then I write that down as part of my answer.

The next term is 3*x*. I put a square around that one. Then look for another one. Of course, we have -5*x*, so I put a square around that one too.

Then add them: 3*x* + -5*x* is -2*x*, and I write that down as the next part of my answer.

You always want to double check that there aren't any more.

Finally, we have 4. I continue the same idea, but I put a triangle around it. Now I look for another like term to 4. Of course, that's 7, so I put a triangle around that one.

Then I add them: 4 + 7 is 11, and I write that down as the last part of my answer.

It's always good to double check that you have everything in a circle, square or triangle. When you get longer polynomials, it's easy to miss terms!

So here's my final answer: 3*x*^2 - 2*x* + 11.

'Okay, Kathryn, do I have to use circles, squares and triangles?' No! If you're good at adding polynomials, you can cross off as you go, but for those that haven't had enough practice, this is definitely my suggestion.

'Kathryn, what about problems that have more terms? What other shapes or ideas do you have?' Great question! You can use different colors to circle like terms. I don't use it here for the benefit of students who are color blind, but you could have used red to circle the *x*^2s, blue to circle the *x*s and green for the numbers. I've also used the method of underlining like terms too! Whatever you choose is how you will distinguish the different terms!

In subtraction, let me show you the underlining method.

(3*x*^2 - 2*x* + 5) - (2*x*^2 - 6*x* + 7)

First, I am going to distribute the -1 into the second expression. That will make this an addition problem!

The first expression stays the same: 3*x*^2 - 2*x* + 5. We will distribute the negative, like this: -1 * 2*x*^2, which is -2*x*^2; -1 * -6*x*, which is a positive 6*x*; and -1 * 7, which is -7. This gives us our new subtraction problem: (3*x*^2 - 2*x* + 5) + (-2*x*^2 + 6*x* - 7).

Remember, I am going to show you the method of underlining instead of circling to add the expressions.

We look at the first term 3*x*^2 and underline it. Now, I continue to look for a like term. Here it is, -2*x*^2, and I underline it. Now I add them: 3*x*^2 + (-2*x*^2), and we get *x*^2. That's going to be the first term of our answer.

The second term is -2*x*, and this time, I put a squiggly line under it. Now I continue to look for a like term. Here it is: 6*x*, and I put a squiggly line under that one. I add -2*x* + 6*x*, and I get 4*x*. That's the second term in our answer.

The last term is 5, and this time I put a jagged line under it. Now, I continue to look for a like term. Here it is: -7, and I underline it. Now, I add them: 5 + -7, and we get -2. This will be my last term in the answer: *x*^2 + 4*x* -2.

Now, we get to multiplication. This problem won't quite work like addition or subtraction, and we can't use FOIL because these are larger than a binomial times a binomial!

(*x*+5)( *x*^2+3*x*-2)

First, multiply the first term in the product: *x* times everything in the second expression.

I like to draw arrows to remind me which multiplication I've done; otherwise I tend to get lost.

This is how it will look:

*x*(*x*^2) + *x*(3*x*) + *x*(-2)

Let's multiply.

*x*(x^2) = *x*^3 + *x*(3*x*) = 3*x*^2 + *x*(-2)= -2*x*.

This isn't our final answer; we need to multiply everything in the second expression by 5!

So we'll have 5(*x*^2) + 5(3*x*) + 5(-2)

Are you ready for the final answer? We simply add the like terms together!

*x*^3 + 3*x*^2 - 2*x* + 5*x*^2 + 15*x* - 10

Start from the left, and circle *x*^3. It looks like there aren't any like terms for *x*^3, so we write that down as our final answer.

Put a square around 3*x*^2. I look and find 5*x*^2, so I put a square around that term, too. I don't see any more, so 3*x*^2 + 5*x*^2 = 8*x*^2. 8*x*^2 is written next to *x*^3 as part of our final answer.

Put a triangle around -2*x*. I look and find 15*x*, so I put a triangle around that term too. Why? Well, they're like terms. I don't see any more like terms for -*x*, so -2*x* + 15*x* = 13*x*. 13*x* is part of our final answer, and I'm going to write it next to 8*x*^2.

Finally, I see -10. I underline this term and look for another one like it. I don't see one, so -10 is written in my final answer.

So, what is the final answer then?

*x*^3 + 8*x*^2 + 13*x* - 10.

Adding: No trick here. Just add like terms together. If you get lost at first, use circles, squares, triangles, lines...anything to separate the different terms.

Subtraction: Multiply the second expression by -1, and add the two expressions together.

Multiplication: Multiply each term in the first expression by each term in the second expression. Add like terms together and you're done!

By the end of this lesson you'll know all about adding, subtracting and multiplying polynomials.

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
7 in chapter 6 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- What Are the Five Main Exponent Properties? 5:26
- How to Define a Zero and Negative Exponent 3:13
- How to Simplify Expressions with Exponents 4:52
- Rational Exponents 3:22
- Simplifying Expressions with Rational Exponents 7:41
- How to Graph Cubics, Quartics, Quintics and Beyond 11:14
- How to Add, Subtract and Multiply Polynomials 6:53
- How to Use Synthetic Division to Divide Polynomials 6:51
- Dividing Polynomials with Long and Synthetic Division: Practice Problems 10:11
- Go to Exponents and Polynomials

- DSST Principles of Advanced English Composition: Study Guide & Test Prep
- Upper Level SSAT: Test Prep & Practice
- The Adventures of Sherlock Holmes Study Guide
- Sherlock Holmes Short Stories Study Guide
- PTE Academic Test: Practice & Study Guide
- Finding, Evaluating & Using Sources
- Revising & Editing an Essay
- Citing & Documenting Sources
- Analyzing Arguments in Writing
- Audience & Goal In Writing
- TOEIC Listening & Reading Test: Purpose & Format
- Excelsior College BS in Business Degree Plan Using Study.com
- IELTS General Training Reading: Format & Task Types
- IELTS General Training Writing: Format & Task Types
- Gates-MacGinitie Reading Test Scores
- IELTS General Training Test: Structure & Scoring
- Supply and Demand Activities for Kids

- Updating the Project Schedule & Dealing with Change
- Hotel Housekeeping: Standards & Checklist
- Capital Requirements: Definition & Explanation
- Holistic Perspective in Anthropology: Definition & Approach
- Special Education Transition Plans from Middle School to High School
- Spartan Traditions: Festivals & History
- American Colonial Music: Instruments & Facts
- Strategies for Teaching Manners to Students with Autism
- Quiz & Worksheet - Personal Finance & Consumer Skills
- Quiz & Worksheet - Financial Markets
- Quiz & Worksheet - History of the Hospitality Industry
- Quiz & Worksheet - Cultural Norms in Central America
- Quiz & Worksheet - The Soldier by Rupert Brooke
- Muscle Contraction Flashcards
- Water Polo Flashcards

- History 101: Western Civilization I
- Fundamental Biology
- SAT Writing Section: Prep & Practice
- Remedial Earth Science
- Math 104: Calculus
- Drama for 11th Grade
- The Writing Process for 9th Grade
- Quiz & Worksheet - Economic Government Intervention
- Quiz & Worksheet - Progressivism History & Goals
- Quiz & Worksheet - Hills Like White Elephants and Other Hemingway Stories
- Quiz & Worksheet - Concurrent Powers
- Quiz & Worksheet - Sioux Tribe

- Maysville Road Bill Veto
- Neutrality Acts: Definition & History
- What is the TExES PPR Exam?
- Preparing for the AP Biology Exam: Tips & Tricks
- Introduction to Geometry Lesson Plan
- Can You Join the Army with a GED?
- How to Find PSAT Scores
- Text Features Lesson Plan
- What Is the TExES Principal Test?
- How Long Should I Study for the MCAT?
- Free PSAT Practice Test
- Can You Retake an AP Exam?

Browse by subject