Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Chad Sorrells*

Chad has taught Math for the last 9 years in Middle School. He has a M.S. in Instructional Technology and Elementary Education.

Finding the graph of a polynomial isn't too hard. If you can graph, you already know the major steps! With a couple rules and helpful memorizing tools, you will be graphing polynomials in no time!

In this lesson, we're looking at how to graph several equations that contain different exponential values. Let's start by reviewing the graphs of *y* = *x*^2, *y* = *x*^4 and *y* = *x*^6. We notice that the graphs with positive leading coefficients and even exponents have an end behavior - that is, the ends of their graphs go up to the left and up to the right.

Next, let's look at what happens when our graphs have negative coefficients in front. In this screen, we see the graphs of *y* = -*x*^2, *y* = -*x*^4 and *y* = -*x*^6. If the leading coefficient is negative, their end behavior is opposite, so it will go down to the left and down to the right.

Let's continue our review with odd exponents. Here you see the graphs of *y* = *x*^3, *y* = *x*^5 and *y* = *x*^7. We notice that the graphs with positive leading coefficients and odd exponents have an end behavior going down to the left and up to the right. As we add a negative sign in front of our leading coefficient, we see that our graphs change. If the leading coefficient is negative, their end behavior goes up to the left and down to the right.

The previous graphs were all simple forms of a more complex graphing process. Most of the graphs we will look at have a whole bunch of hills and valleys called **local maximums and local minimums**. To graph an equation that is more complex, we will need to know where the hills and valleys occur. A relative local maximum is the highest bump in a graph; we can think of this as a hill. A relative local minimum is the lowest bump on the graph; we can think of this as a valley.

Let's see what these type of graphs look like. Let's look at the graph of *y* = *x*^3 + 3*x*^2 - 16*x* - 48. As you can see, the highest bump in the graph is our local max, or hill. It isn't our maximum point because the graph goes up to infinity on the end of our graph here. So it is our **local max**. We can also notice **local minimum**, or the valley. The minimum is not an absolute minimum because the graph goes down to negative infinity here.

This equation can also give us tips about how many bumps we could find in the graph. To calculate how many bumps any equation will have, we take the degree of the equation and subtract one. The degree of the equation is the largest exponential value found in the equation.

Let's look at the equation *y* = *x*^3 + 3*x*^2 - 16*x* - 48. The degree of this equation is 3. To find out how many bumps we can find, we take the degree of the equation and subtract one: 3 - 1 = 2. So at most we would find two bumps in our graph. Now we're ready to start the fun part - graphing without a calculator using what we know about graphing polynomials. On a multiple-choice test, we aren't going to literally graph the equation; we are going to pick the answer that shows the graph. With what we have learned, this should be fairly easy.

Let's look at a sample test question. Which graph represents the equation *y* = *x*^3 - 10*x*^2 - 11*x* + 180? Looking at these four multiple choice options, let's use what we know about graphing polynomials to select the correct answer. To begin, let's graph what we know about this equation on a blank Cartesian plane.

We know that our graph will go down to the left and up to the right because the leading coefficient, 1, is positive and its exponential power of 3 is odd. Answer choice B can be eliminated because it goes up to the left and down to the right.

We can also determine that there will be two bumps on the graph because the degree power of the equation is 3. To calculate the number of bumps, remember we subtract the degree power of the equation minus 1. So, 3 - 1 = 2 bumps. So the maximum number of bumps we will find in this equation will be two. So right away we can cancel out any graph that has more than two bumps. We can cancel out graph A because it has more than two bumps.

We are now left with two answer choices: C and D. The next way that we can determine which graph matches the equation is to find the y-intercept. To find the y-intercept, we will need to evaluate the equation for *x* = 0.

Starting with our equation, *y* = *x*^3 - 10*x*^2 - 11*x* + 180, we will plug in a zero for every *x* value we see. Now our equation looks like *y* = (0)^3 - 10(0)^2 - 11(0) + 180. To solve this equation, we will first do our exponents. Zero raised to any exponent is zero. Our equation now looks like *y* = 0 - 10(0) - 11(0) + 180. Next, we need to do all of the multiplication. Again, any number times zero equals zero. Our equation simplifies to *y* = 180. So our y-intercept for this equation is (0, 180).

It looks like the graphs of answer choices C and D both intersect the y-axis at (0, 180). The y-intercept does not help us in this case pick our correct answer. Let's graph some other points that we can find on a blank Cartesian plane to see which graph best matches the correct answer.

If our equations were easy to factor, we could find the x-intercepts. Unfortunately, we aren't that lucky with this equation. So we are going to plot some points to see how it looks in the middle, or between the ends of the graph. Easy points that I would try with virtually any equations would be when *x* = -1 and 1. We already know that when *x* = 0 that was our y-intercept.

First let's solve for *x* = -1. To do so, we will evaluate our equation by plugging in -1 for all of the *x* values. Our equation was *y* = *x*^3 - 10*x*^2 - 11*x* + 180. When we plug in our -1 values for *x*, it becomes *y* = (-1)^3 - 10(-1)^2 - 11(-1) + 180. To work this equation, we will need to compute all of the exponents, making our equation *y* = -1 - 10(1) - 11(-1) + 180. Next, we simply need to multiply our equation, so now we get *y* = -1 - 10 + 11 + 180. After adding, our solution will be *y* = 180. So this ordered pair is (-1, 180). We can see that this point on the graph would be beside our y-intercept.

Now we can see that we have two pairs of coordinates in our table: (-1,180) and (0,180). Next, let's evaluate the equation for x = 1. When we let *x* = 1, we plug in 1 in for all *x* values. Our equation now looks like *y* = (1)^3 - 10(1)^2 - 11(1) + 180. We need to solve this equation the same way - by first completing the exponents and then multiplying.

After completing the exponents, our equation looks like *y* = 1 - 10(1) - 11(1) + 180. Then after multiplying we end up with *y* = 1 - 10 - 11 + 180. After we add, the solution to this equation will be *y* = 160. So this ordered pair is (1, 160). By graphing that point, we can see that this point will be to the right of and below our y-intercept.

We now have three pairs of coordinates: (-1, 180), (0, 180) and (1, 160). By knowing these three ordered pairs, we can now check our answer choices to see if we can eliminate either of our remaining choices. At this point, we can see that graph C is not our graph, so the graph that matches the equation would be answer choice D.

To sketch for a class, you will follow the exact same ideas that we discussed here. The more points that you graph, the better picture you will see of your graph. Oftentimes you will need to plot a couple more points along the graph. If after you've plotted a of couple points and you're still unsure, keep plotting until you're comfortable that you know exactly which graph it will look like.

In review, below is a list of steps that will be helpful for you when graphing polynomials:

- Determine the end behavior of the graph by looking at the lead coefficient.
- Graph the y-intercept by putting zero (0) in for
*x*values. - If you can factor the polynomial, do that; it will be your x-intercepts, but not all polynomials will factor nicely.
- Remember to graph points where
*x*= -1 and*x*= 1. These points will help you determine where to plot more points - like in our example (when we decided to plot more points to the right of the origin), in some instances, you will need to plot to the left of the origin. - If you are still not sure about the sketch, keep plotting more points. The more points you plot, the more accurate you will be with your answer.

After watching this video students should be able to graph polynomials by checking the lead coefficient, solving for the y-intercept, and/or plotting more points.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
6 in chapter 6 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- What Are the Five Main Exponent Properties? 5:26
- How to Define a Zero and Negative Exponent 3:13
- How to Simplify Expressions with Exponents 4:52
- Rational Exponents 3:22
- Simplifying Expressions with Rational Exponents 7:41
- How to Graph Cubics, Quartics, Quintics and Beyond 11:14
- How to Divide Polynomials with Long Division 8:05
- How to Use Synthetic Division to Divide Polynomials 6:51
- Dividing Polynomials with Long and Synthetic Division: Practice Problems 10:11
- Go to Exponents and Polynomials

- Go to Functions

- GACE Geography Test I: Practice & Study Guide
- GACE Economics Test II: Practice & Study Guide
- GACE Economics Test I: Practice & Study Guide
- Praxis Fundamental Subjects - Content Knowledge (5511): Study Guide & Exam Prep
- College Physics: Help & Review
- Africa & African-Americans in Nonfiction Literature
- Asia & Asian-Americans in Nonfiction Literature
- Basic Motion Terms & Concepts
- Spanish Alphabet & Numbers Lesson Plans
- Studying for Communications 102
- Common Core State Standards in Ohio
- Resources for Assessing Export Risks
- Preview Personal Finance
- California School Emergency Planning & Safety Resources
- Popsicle Stick Bridge Lesson Plan
- California Code of Regulations for Schools
- WV Next Generation Standards for Math

- Looking for a Job Online & In Person: Strategies & Best Practices
- Psychosocial Intervention: Definition & Examples
- Bipedal Dinosaurs: Types & Examples
- Using Quadratic Formulas in Real Life Situations
- The Importance of Being Earnest Setting Quotes
- Impact of Sustainability & Environmental Improvement on Urban Environments
- Oxygen Therapy: Indications & Patient Management
- Ring Flip in Organic Chemistry: Definition, Structure & Examples
- Quiz & Worksheet - What Is Capital Punishment?
- Quiz & Worksheet - Finding Missing Numerators & Denominators in Addition & Subtraction Sentences
- Quiz & Worksheet - Kafka on the Shore Synopsis
- Different Kinds of Plants: Quiz & Worksheet for Kids
- Quiz & Worksheet - Understanding The Things They Carried
- Workplace & Computer-Mediated Communication Flashcards
- The Conflict Management Process Flashcards

- AP World History: Help and Review
- Common Core Math Grade 7 - Ratios & Proportional Relationships: Standards
- College Preparatory Mathematics: Help and Review
- Business Ethics: Skills Development & Training
- How to Apply to College: Guidance Counseling
- Forms of Energy and Conservation
- GACE Early Childhood Education: The US in the 1960s to Today
- Quiz & Worksheet - Characteristics of Violence in the US
- Quiz & Worksheet - Sumerian Art and Architecture
- Quiz & Worksheet - Sources of Minerals in Food & Their Roles in the Body
- Quiz & Worksheet - Species Composition

- Generation Y: Definition, Characteristics & Personality Traits
- Types of Triangles Lesson Plan
- Essay Prompts, Rubric & Instructions for English Literature
- How Long Should I Study For the GMAT?
- ACT English Tips
- Homeschooling in New Jersey
- Plant Experiments for Kids
- The National Standards for Family & Consumer Sciences
- Colorado State Standards for Social Studies
- New Jersey Science Standards
- How to Pass the NCLEX-PN
- New Mexico State Standards for Science

Browse by subject