Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Kathryn Maloney*

Kathryn teaches college math. She holds a master's degree in Learning and Technology.

A rational equation is one that contains fractions. Yes, we will be finding a common denominator that has 'x's. But no worries! Together we will use a process that will help us solve rational equations every time!

A rational equation is an equation that contains fractions with *x*s in the numerator, denominator or both. Here is an example of a rational equation: (4 / (*x* + 1)) - (3 / (*x* - 1)) = -2 / (*x*^2 - 1).

Let's think back for a moment about solving an equation with a fraction. 1/3 *x* = 8. We think of the 3 in the denominator as being a prisoner, and we want to release it. To set the 3 free, we multiply both sides of the equation by 3. Think of it as 3 letting both sides of the equation know he's leaving. 3 (1/3 *x*) = 8 (3).

This process freed our denominator and got rid of the fraction - *x* = 24. It is also the process we use to solve rational equations with one extra step. In rational equations, sometimes our solution may look good, but they carry a virus; that is, they won't work in our equation. These are called extraneous solutions. The steps to solve a rational equation are:

- Find the common denominator.
- Multiply everything by the common denominator.
- Simplify.
- Check the answer(s) to make sure there isn't an extraneous solution.

Let's solve a couple together.

Example number one: solve. Remember to check for extraneous solutions. (3 / (*x* + 3)) + (4 / (*x* - 2)) = 2 / (*x* + 3).

Our first step is to figure out the terms that need to be released from the denominators. I look at 3 / (*x* + 3). I write down (*x* + 3) as one of my common denominators. I look at 4 / (*x* - 2). I write down (*x* - 2) as another part of my common denominator. I look at 2 / (*x* + 3). Since I already have (*x* + 3) written in my denominator, I don't need to duplicate it.

Next, we multiply everything by our common denominator - (*x*+3)(*x*-2). This is how that will look: ((3(*x* + 3)(*x* - 2)) / (*x* + 3)) + ((4(*x* + 3)(*x* - 2)) / (*x* - 2)) = (2(*x* + 3)(*x* - 2)) / (*x* + 3))

It isn't easy for the denominators to be released; there is a battle, and like terms in the numerator and denominator get canceled (or slashed). Slash (or cancel) all of the (*x* + 3)s and (*x* - 2)s in the denominator and numerator. Our new equation looks like: 3(*x* - 2) + 4(*x* + 3) = 2(*x* - 2).

Distribute to simplify: (3*x* - 6) + (4*x* + 12) = 2*x* - 4. Collect like terms and solve. 3*x* + 4*x* = 7*x*, -6 + 12 = 6. We end up with 7*x* + 6 = 2*x* - 4.

Subtract 2*x* from both sides: 7*x* - 2*x* = 5*x*. Subtracting from the other side just cancels out the 2*x*, and we get 5*x* + 6 = -4. Subtract 6 from both sides: -4 - 6 = -10. Again, subtracting 6 will cancel out the +6, so we end up with 5*x* = - 10. Divide by 5 on both sides, and we cancel out the 5 and give us *x* = - 2. It turns out *x* = - 2.

The reason we check our answers is that sometimes we get a virus, or, in math terms, extraneous solutions. To check, I replace all the *x*s with -2: (3 / (-2 + 3)) + (4 / (-2 - 2)) = (2 / (-2 + 3)). Let's simplify: (3 / 1) + (4 / -4) = (2 / 1). Since 3 + -1 = 2 is true, *x* = - 2 is the solution!

Example number two: solve. Remember to check for extraneous solutions. (4 / (*x* + 1)) - (3 / (*x* - 1)) = -2 / (*x*^2 - 1).

First we need to release our denominators. To release our denominators, we write down every denominator we see. I have found the easiest way to do this is to first factor, if needed, then list the factors. *x*^2 - 1 = (*x* + 1)(*x* - 1).

Our new equation looks like this: (4 / (*x* + 1)) - (3 / (*x* - 1)) = -2 / (*x* + 1)(*x* - 1).

I look at 4 / (*x* + 1). I write down (*x* + 1) as one of my common denominators. I look at 3 / (*x* - 1). I write down (*x* - 1) as another part of my common denominator. I look at -2 / (*x* + 1)(*x* - 1). Since I already have those written in my denominator, I don't need to duplicate them. So my common denominator turns out to be (*x* + 1)(*x* - 1).

Kathryn, why aren't we using the factors of *x*^2 - 1? Great question! We already have (*x* + 1) and (*x* - 1) being released. We don't need to do it twice.

Now we multiply each part of the equation by the common denominator - (*x* + 1)(*x* - 1). Think of this as the key to the prison: (4 (*x* + 1)(*x* -1) / (*x* + 1)) - (3 (*x* + 1) (*x* - 1) / (*x* - 1)) = -2 (*x* + 1)(*x* - 1) / (*x* + 1)(*x* - 1).

It isn't easy for the denominators to be released; there is a battle, and like terms get canceled (or slashed)! Slash (or cancel) all of the (*x* + 1)s and (*x* - 1)s in the denominator and numerator. This leaves us with 4(*x* - 1) - 3 (*x* + 1) = -2.

Now we need to solve for *x*. Distribute 4 into (*x* - 1) and -3 into (*x* + 1). (4*x* - 4) - (3*x* - 3) = -2. Collect like terms: *x* - 7 = - 2. Add 7 to both sides of the equal sign: *x* = 5.

It looks like our answer is 5, but we need to double-check. I replace all the *x*s with 5 and simplify. It turns out 5 works, and it is the solution to our equation. And so our solution checks!

The steps to solving a rational equation are:

- Find the common denominator.
- Multiply everything by the common denominator.
- Simplify.
- Check the answer(s) to make sure there isn't an extraneous solution.

To unlock this lesson you must be a Study.com Member.

Create your account

Already a member? Log In

BackDid you know… We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
5 in chapter 8 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- PECT PreK-4: Practice & Study Guide
- ISEE Middle Level: Practice & Study Guide
- ISEE Lower Level: Practice & Study Guide
- ISEE Upper Level: Practice & Study Guide
- California Red Cross Nurse Assistant Competency Evaluation (CNA Test) Training
- Database Management & Data Analytics
- Impact of Lipids on Nutrition
- The Role of Vitamins in Nutrition
- How the Body Handles Nutrients
- Role of Physical Fitness in Nutrition
- What Are WIDA Standards?
- WIDA Can Do Descriptors for Kindergarten
- Demographics for English Language Learners
- Is the TAP Test Hard?
- What is Professional Development for Teachers?
- MTEL Content Test Requirements
- How to Earn Kanban Certification

- Multiple Costing: Definition & Calculation
- Brand Strength & Pricing in Hospitality & Tourism
- Classroom Activities for Introverts
- The Black Legend: Definition & History
- Bermuda Triangle Lesson Plan
- ESL Making Arrangements Vocabulary
- How to Change Your Name: Laws & Process
- Working With Linear Formulas
- Quiz & Worksheet - How Teachers & Administrators Collaborate
- Quiz & Worksheet - Using a Child's Interests to Promote Learning
- Quiz & Worksheet - Analyzing Email Campaigns
- Quiz & Worksheet - Behavioral Theories in Business Communication
- Quiz & Worksheet - Reggio Emilia Educational Approach
- Graphing & Evaluating Equations & Functions Flashcards
- Exponential & Logarithmic Function Flashcards

- The Awakening Study Guide
- MTTC Early Childhood Education: Practice & Study Guide
- Strategic Management in Business
- Common Core Math Grade 6 - Ratios & Proportional Relationships: Standards
- Humanistic Psychology Study Guide
- Old and Middle English Literature: Help and Review
- The Renaissance: Help and Review
- Quiz & Worksheet - Chemical Equations on the AP Chemistry Exam
- Quiz & Worksheet - Rhymes & Sounds in Poetry
- Quiz & Worksheet - Riboflavin Deficiency & Toxicity Symptoms
- Quiz & Worksheet - Outlining a Speech
- Quiz & Worksheet - Calcium Deficiency & Toxicity Symptoms

- The Style of a Speech: Speaker, Audience & Purpose
- Historical Factors of Climate Change
- High School Diploma Online Courses
- Gates-MacGinitie Reading Test Scores
- PMP Continuing Certification Requirements (CCR) Program
- 3rd Grade Word Walls
- California Education Technology K-12 Voucher Program for Professional Development
- How to Pass the Police Exam
- What are the NYS Regents Exams Requirements?
- Science Project Grading Rubrics
- How to Pass the Real Estate Exam
- Recycling Activities & Games for Kids

Browse by subject