Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Luke Winspur*

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

Inverse functions are two functions that do exactly opposite things. Check out this lesson to learn about how to write inverse functions, find inverse functions, and predict whether or not they exist.

You probably haven't had to watch very many of these videos to hear me say the words 'inverse operations.' I use this term to talk about how we can solve algebraic equations - maybe like this one: 2*x* + 3 = 9 - by undoing each number around the variable. For example, we undo a plus 3 with a minus 3 because addition and subtraction are inverse operations. We can then also undo a times by 2 with a divide by 2, again, because multiplication and division are inverse operations.

In just the same way, an **inverse function** is a function that is the opposite of another one. If a function is a set of steps to do to a number, its inverse is just a different set of steps that undoes everything the original function did.

For example, if we had one function f(*x*) that told us to start with a number, subtract 5, and then divide by 2, its inverse function would, instead, do all the opposite operations in the opposite order. That means that it would start with the same number, multiply it by 2 first, and then add 5.

Notice that we use this f to the -1 power notation to indicate an inverse function. This has to do with what an exponent of -1 means, but it's not really important that you understand why we use it, only that we do.

Once we have a function and its inverse, we can check to make sure they are inverses by using function composition. If you're not familiar with this process, there is a video you can watch to learn about it, but basically it means plugging one function into another. The idea is that since inverse functions do the exact opposite things, if we compose them together, we should end up exactly where we started - just a plain *x*. Let's try this with our example above.

Substituting in f^-1 into f means evaluating f(f^-1(*x*)). Plugging an f inverse function wherever we used to see an *x* in the f function makes our equation look like this: f(f^-1(*x*)) = (2*x* + 5 - 5) / 2. Right away we see the different steps canceling out. The +5 and the -5 in the numerator undo each other, leaving us here: f(f^-1(*x*)) = 2*x* / 2, and then the times 2 and divided by 2 undo to bring us right back to where we started - plain old *x*. This process actually shows us the mathematical definition of inverse functions: two functions that, when composed with each other, cancel out and get us right back to the *x* on the inside.

So, now that we know what inverse functions are, how might you go about finding one? Say we have the function g(*x*) = sqrt(2*x* - 3) shown here, what would the inverse of g be?

Well, okay, since g(*x*) is really just a different way of saying *y*, we could rewrite our function like this: *y* = sqrt(2*x* - 3). Now, relying on the knowledge that the inverse is a list of steps that are the exact opposite as the original, we can use the following trick to find any inverse function. Switching the *x* and the *y* and now solving the equation for *y* with inverse operations will provide us with the exact set of steps that will undo the original function.

Doing that here would mean we'd first square both sides to undo the square root, then add 3 to both sides to undo the subtraction, and finally divide by 2 to undo the multiplication. The equation we end up with, (*y* = (*x*^2 + 3) / 2), is the inverse because it includes all of the inverse operations in reverse order of the original function. Therefore, g^-1(*x*) = (*x*^2 + 3) / 2.

The last thing to cover has to do with specifics regarding what makes a function and therefore what makes its inverse. You'll need to remember that any function can only have one output for each input. One common way to test this is called the vertical line test. By tracing a vertical line across the graph, we can check to see if the relation is indeed a function. If our imaginary vertical line crosses the graph in more than one place, the relation is not a function, but if it passes across the entire graph and only ever touches the graph in one spot, it is.

We can use a similar tactic to also test whether the inverse is a function as well, but now, similar to how we switch the *x* and the *y* to find the inverse, we switch the vertical line to a horizontal line. This means that in order to test whether a relation's inverse is a function, we use the **horizontal line test** instead of the vertical line test, but everything else is the same. We trace this imaginary horizontal line across the graph, looking for a place where it touches more than once. If it never does, the inverse is a function, but if it ever touches the graph in more than one spot, the inverse is not a function.

There's a lot to know about **inverse functions**, so let's review what we've learned. A function's inverse is another function that does the exact opposite, and we use the negative one power to express it: f^-1(*x*).

If we compose a function with its inverse, the two functions essentially undo each other, leaving us right back where we started - the *x*. We can figure out what the inverse of a function is by swapping the *x* and the *y* and then re-solving the equation for *y*. And finally, to test whether or not the inverse is a true mathematical function, we can use the **horizontal line test** to see if our imaginary horizontal line ever touches the graph in more than one spot.

After viewing this lesson you should be able to formulate a function's inverse and use the horizontal line test if an inverse function is a true function.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
6 in chapter 7 of the course:

Back To Course

Math 101: College Algebra12 chapters | 94 lessons | 11 flashcard sets

- Marketing 102: Intro to Digital Marketing
- Native Son Study Guide
- UExcel Financial Accounting: Study Guide & Test Prep
- DSST Money & Banking: Study Guide & Test Prep
- DSST Management Information Systems: Study Guide & Test Prep
- Understanding Receivables in Accounting
- Liabilities in Accounting
- Inventory Management in Accounting
- The Operating Cycle in Accounting
- Information Systems, Privacy & Security
- SBEC Technology Application Standards for Teachers
- How to Find Financial Aid for Teachers
- New Mexico State Standards for Science
- ELL Services in Massachusetts
- Publications for ESL Teachers
- WIDA Can Do Descriptors for Grades 9-12
- WV Next Generation Standards for Science

- 'The Horror! The Horror!' in Heart of Darkness
- What Is Marketing Strategy? - Examples & Objectives
- Labor Rate Variance: Definition & Formula
- The Book Thief Vocabulary
- Conditions of Freedom Essay Topics
- The Quiet American Essay Topics
- Pelvic Fracture: Complications, Treatment & Recovery
- Noun-Clause Activities & Games
- Quiz & Worksheet - Symbols & Symbolism in Orwell's 1984
- Quiz & Worksheet - Analyzing the Setting of Heart of Darkness
- Quiz & Worksheet - Understanding Multidomestic Strategy
- Quiz & Worksheet - Cult Leader Description
- Quiz & Worksheet - Configuration Management Process & Tools
- Regression & Correlation Flashcards
- Statistical Calculations for Business Flashcards

- NY Regents Exam - Geometry: Help and Review
- Principles of Marketing: Certificate Program
- Fundamental Chemistry
- History of the Vietnam War: Certificate Program
- Introduction to Statistics: Certificate Program
- American Literary Periods: Homeschool Curriculum
- Gothic and Romantic Literature
- Quiz & Worksheet - Battle of Cold Harbor
- Quiz & Worksheet - Types of Business Products
- Quiz & Worksheet - Siege of Petersburg
- Quiz & Worksheet - General Sherman's Atlanta Campaign
- Quiz & Worksheet - Adjusting the Marketing Mix for International Markets

- Hydrogen Bonding, Dipole-Dipole & Ion-Dipole Forces: Strong Intermolecular Forces
- A Chaste Maid in Cheapside by Thomas Middleton: Summary & Themes
- How Hard is the CSET Social Science?
- Harlem Renaissance Lesson Plan
- How Much Does it Cost to Study Abroad?
- 8th Grade Writing Prompts
- Video Game Science Fair Projects
- Writing Prompts for Kids
- Finding Summer Teaching Opportunities
- 504 Plans in Indiana
- Curriculum Vitae Template
- 8th Grade Writing Prompts

Browse by subject