Back To Course

Precalculus: Help and Review11 chapters | 88 lessons

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Learn how beautifully simple linear relationships are and how easy they are to identify. Discover how you can see them in use in the world around you on an everyday basis and why they are useful. At the end of the lesson, test yourself with a quiz.

As its name suggests, a **linear relationship** is any equation that, when graphed, gives you a straight line. Linear relationships are beautifully simple in this way; if you don't get a straight line, you know you've either graphed it wrong or the equation is not a linear relationship. If you get a straight line and you've done everything correctly, you know it is a linear relationship.

There are only three criteria that equations must meet to qualify as a linear relationship. What are they? Let's find out. To be called a linear relationship, the equation must meet the following three items:

1. The equation can have up to two variables, but it cannot have more than two variables.

2. All the variables in the equation are to the first power. None are squared or cubed or taken to any power. And also, none of the variables will be in the denominator. These are examples of equations that do not have a linear relationship.

You'll notice that these equations have variables that are squared and cubed. One equation has a variable in the denominator. When graphed, none will yield a straight line.

3. The equation must graph as a straight line. Linear relationships such as *y* = 2 and *y* = *x* all graph out as straight lines. When graphing *y* = 2, you get a line going horizontally at the 2 mark on the y-axis. When graphing *y* = *x*, you get a diagonal line crossing the origin.

There are equations in use in the real world today that meet all the criteria discussed above. Linear relationships are very common in our everyday life, even if we aren't consciously aware of them. Take, for example, how fast things such as cars and trains can go. Have you ever thought about how their speeds are calculated? When a police officer gives someone a speeding ticket, how do they know for sure if the person was speeding? Well, they use a simple linear relationship called the **rate formula**.

This formula tells us that the speed of a certain object is calculated by dividing the distance traveled by the time it took to travel that distance. So, if someone spent 1 hour traveling a distance of 80 miles on a 55 mph road, then you can be sure that they were speeding because 80 miles divided by 1 hour gives you 80 mph. At first glance, this formula looks like it doesn't fit the criteria because it looks like it has three variables. But, it really is a linear relationship because at least one of your variables will always be a constant depending on your problem. You can have a constant rate for which you have to solve for distance or time. The relationship would be 35 = *d* / *t* or whatever the given rate is. It's the same if the distance is given as the constant, *r* = 100 / *t*.

Another example is that of converting temperature from Fahrenheit to Celsius. If you live in the United States, you probably use Fahrenheit, but if you discuss weather with a friend who lives in a different part of the world, you may need to convert the temperature to Celsius. You can use the **conversion formula** to convert one temperature type to the other:

You just saw two formulas: one for converting Fahrenheit to Celsius and the other for converting Celsius to Fahrenheit. This is the formula that is used when you use an automatic temperature converter app. And also, on classic mercury thermometers where it shows both Fahrenheit and Celsius together, you can check it by plugging various numbers into the equations to see if it matches.

You may also be familiar with linear relationships if you travel. When you visit another country, you will most likely need to exchange your currency for the currency of the place you are visiting. Let's say, for example, you wanted to travel to Australia from the United States. As of May 2013, the exchange rate for converting Unites States dollars to Australian dollars is 1.0373. To figure out how much money you'd be getting back after the exchange, you would use this **exchange rate conversion formula**, which is a linear relationship:

The first equation is the general exchange rate conversion formula, and the second is the more specific one for converting United States dollars to Australian dollars.

Looking at all of these examples, you can see how they all meet the criteria for linear relationships. All the variables are to the first power; there are at most only two variables; and all graph to a straight line.

Working with linear relationships is very straightforward. It's all about plugging in the right value for the right variable and making the calculations based on the formula. For example, let's say I wanted to find out how fast I could run. I start to run, and I have to stop to catch my breath after 15 minutes. I'd only gone 1 mile. How fast was I going?

According to my formula, I need to plug in my distance and my time and then divide by two. So, I do that and I get .067 miles per minute. Not too bad for someone out of shape. Do you see how easy it is to work with linear relationships?

Looking back at our currency example, let's say I wanted to exchange 500 United States dollars. How many Australian dollars would I end up with?

Looks like I would end up with 518.65 Australian dollars. Woohoo! I am $18.65 richer! Well, not really, but it feels like it. Can you see how I simply plugged in my values into the appropriate variable and made the appropriate calculation?

There are only three criteria an equation must meet to qualify as a **linear relationship**:

- It can have up to two variables
- The variables must be to the first power and not in the denominator
- It must graph to a straight line

Working with linear relationships is straightforward and a matter of simply plugging in the right values into the right variables and making the appropriate calculations.

- All linear equations, when graphed, form a line.
- A linear equation can have no more than two variables.
- The variable(s) in a linear equation cannot be located in the denominator.
- Linear equations are used in daily life.

Upon completing this lesson on linear relationships, ensure that you have the capacity to:

- Write the definition of a linear relationship
- List the criteria for a linear equation
- Apply linear relationships to the real world
- Use specific formulas and plug in the correct values to make calculations

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
10 in chapter 4 of the course:

Back To Course

Precalculus: Help and Review11 chapters | 88 lessons

- What are the Different Types of Numbers? 6:56
- What Are the Different Parts of a Graph? 6:21
- What is a Linear Equation? 7:28
- Linear Equations: Intercepts, Standard Form and Graphing 6:38
- Abstract Algebraic Examples and Going from a Graph to a Rule 10:37
- Graphing Undefined Slope, Zero Slope and More 4:23
- How to Write a Linear Equation 8:58
- What is a System of Equations? 8:39
- How Do I Use a System of Equations? 9:47
- Linear Relationship: Definition & Examples 6:29
- Go to Foundations and Linear Equations in Precalculus: Help and Review

- Influence & Persuasion for Front-Line Managers
- Purpose-Driven Business Leadership
- Lean-Agile Mindset for Leaders
- Reducing Stress for Supervisors
- Team Building Skills for Supervisors
- Designing Influential Messages in Business
- Aligning Jobs, Goals, Purpose & Agenda
- Continuous Lean Process Improvement
- Overcoming Obstacles to Influence & Persuasion in Business
- Techniques & Tools for Influence in Business
- CLEP Exam Question Formats
- CLEP Exam Costs & Registration Deadlines
- CLEP Exam List & Credits Offered
- How to Request a CLEP Transcript
- CLEP Exam Dates & Testing Center Locations
- CLEP Scoring System: Passing Scores & Raw vs. Scaled Score
- Continuing Education Opportunities for Molecular Biology Technologists

- Human Resources Management for Hospitality
- Willowbrook Hepatitis Experiments: Bioethics Case Study
- The Full Cycle of Event Planning in a Hotel
- The Electrical Stimulation Method: Theorists, Research & Applications
- Higher-order Determinants Lesson Plan
- Using Anecdotes to Persuade an Audience
- What Are Civil Disturbance Operations?
- Value Creation in Business: Definition & Example
- Quiz & Worksheet - Angles in Standard Position
- Quiz & Worksheet - Sustainable Tourism
- Quiz & Worksheet - Rhetorical Devices in In Cold Blood
- Quiz & Worksheet - Personalistic & Naturalistic Theory in Science
- Quiz & Worksheet - Synopsis of Wonder by R.J. Palacio
- Tourism Marketing Flashcards
- Tourism Economics Flashcards

- ACT Compass Reading Test: Practice & Study Guide
- Molecular Biology: Help & Review
- Life Science Curriculum Resource & Lesson Plans
- Mitosis: Help & Review
- Holt McDougal Modern Chemistry: Online Textbook Help
- Types of Running Water
- America in the 1970s
- Quiz & Worksheet - Poetic Metaphors, Personification & Similes
- Quiz & Worksheet - Supreme Court's Jurisdiction
- Quiz & Worksheet - Impacts of Individual Abilities in Organizational Behavior
- Quiz & Worksheet - Communication in Individualistic vs. Collectivistic Cultures
- Quiz & Worksheet - Drawing Conclusions From Research to Make Recommendations

- Privileges & Immunities Clause: Definition & Examples
- Mental Accounting: Definition & Example
- Three Branches of Government Lesson Plan
- What are Passing Scores for GACE Tests?
- Enlightenment Lesson Plan
- Communism Lesson Plan
- How to Study for Biology in College
- Scholarships for Study Abroad
- STEM & Next Generation Science Standards
- Major Battles & Offensives of the Vietnam War: Learning Objectives & Activities
- Creative Writing Exercises for Kids
- Best Place to Study Abroad

Browse by subject