Copyright

Multiplying and Dividing Rational Expressions: Practice Problems

  • 0:05 Review
  • 0:24 Example #1
  • 1:44 Example #2
  • 3:14 Example #3
  • 4:16 Lesson Summary
Create An Account
To Start This Course Today
Used by over 10 million students worldwide
Create An Account
Try it free for 5 days
Lesson Transcript
Instructor: Kathryn Maloney

Kathryn teaches college math. She holds a master's degree in Learning and Technology.

Let's continue looking at multiplying and dividing rational polynomials. In this lesson, we will look at a couple longer problems, while giving you some practice multiplying and dividing.

Review

Multiplication and division of rational polynomial expressions is easy once you remember the steps.

For multiplication: factor, cancel or slash, and multiply.

For division: factor, flip, cancel or slash, and multiply.

Let's do some larger problems.

Example #1

In example #1, cancel out the like terms to find the solution
Rational Polynomial Cancel Out Example

((q^2 - 11q + 24) / (q^2 - 18q + 80)) * ((q^2 - 15q + 50) / (q^2 - 9q + 20))

First, we need to factor. (q^2 - 11q + 24) factors into (q - 8)(q - 3). (q^2 - 18q + 80) factors into (q - 10)(q - 8). (q^2 - 15q + 50) factors into (q - 10)(q - 5). (q^2 - 9q + 20) factors into (q - 5)(q - 4).

So, this is what our new expression is going to look like: ((q - 8)(q - 3) / (q - 10)(q - 8)) * ((q - 10)(q - 5) / (q - 5)(q - 4))

Next, we are going to cancel (what I like to call slash) like terms. We're going to cancel or slash (q - 10) over (q - 10), (q - 8) over (q - 8), and finally (q - 5) over (q - 5).

Now that we have canceled or slashed all of the like terms from the top and bottom, we multiply straight across. Don't multiply anything we slashed because those are now 1's. It turns out, our answer is (q - 3) / (q - 4).

Example #2

In example #2, flip the second fraction before changing the problem to a multiplication one
Dividing Rational Expression Example 2

((y^2 - 9) / (2y + 1)) / ((3 - y) / (2y^2 + 7y + 3))

Let's factor. (y - 9) = (y - 3)(y + 3) and (2y^2 + 7y + 3) = (2y + 1)(y + 3). Our next step is to flip the second fraction and change it to multiplication. Our new expression is going to look like this: ((y - 3)(y + 3) / (2y + 1)) * ((2y + 1)(y + 3) / ((3 - y)).

The next step is canceling, or what we've been calling slashing. We can slash (2y + 1) over (2y + 1). In the numerator, we have (y - 3)(y + 3) and (y + 3). In the denominator we have (3 - y). If we multiply (3 - y) by -1, we'll get -1(y - 3). Guess what? We can cancel (y - 3) over (y - 3), but remember to leave the -1!

So, our final answer's going to look like: (y + 3)(y + 3) / -1.

To unlock this lesson you must be a Study.com Member.
Create your account

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member

Already a member? Log In

Earning College Credit

Did you know… We have over 100 college courses that prepare you to earn credit by exam that is accepted by over 2,900 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You now have full access to our lessons and courses, watch the lesson now or keep exploring.
You've watched a video! Now you are officially smarter, check out the next video or take the quiz to keep learning.
You took a quiz! Getting a perfect score on a quiz is how you gain course progress. If you aced it, great job! If not, don't worry, you can try again.
You now have full access to our lessons and courses, watch the lesson now or keep exploring.
You just finished your first lesson. Study.com has thousands of lessons to help you meet your educational goals.
You're making great progress. Aim to watch at least 30 minutes of lessons each day and you'll master this before you know it!
You've learned so much, but only scratched the surface. Wait until you see what we have in your next lesson!
Getting a perfect score on a quiz is how you gain course progress. If you aced it, great job! If not, don’t worry, you can try again.
You're getting the hang of this! Keep taking quizzes to make progress on your learning goals.
Look how far you've come! Take all the quizzes in a chapter and you'll master this topic in no time.
Keep clicking that 'next lesson' button whenever you finish a lesson and its quiz.
You're 25% of the way through this course! Keep going at this rate and you'll be done before you know it.
Two days in a row, nice! Keep your streak going to get the most of your learning and reach your goal faster.