Parabolas in Standard, Intercept, and Vertex Form

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:06 Kinds of Parabolas
  • 1:07 Standard Form
  • 2:46 Intercept Form
  • 4:26 Vertex Form
  • 5:26 Lesson Summary
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Luke Winspur

Luke has taught high school algebra and geometry, college calculus, and has a master's degree in education.

By rearranging a quadratic equation, you can end up with an infinite number of ways to express the same thing. Learn about the three main forms of a quadratic and the pros and cons of each.

Kinds of Parabolas

Any time you throw something into the air, it's going to follow a parabolic path. From throwing your wrapper into the trash to throwing a 50-yard touchdown to launching a bird that seems a little bit angry, we see parabolas all over the place. It makes sense then that we want to be able to graph them because the graphs can help us answer questions, like will my bird hit its target?

But as is often the case in math, there is more than one way to go about it. In this case, by simply rearranging the parts of the quadratic equation, we can end up with an infinite number of ways to express the same thing. While most of the ways to write the quadratic equation are redundant and useless, there are three forms that actually have unique uses. These three main forms that we graph parabolas from are called standard form, intercept form and vertex form. Each form will give you slightly different information and have its own unique advantages and disadvantages. In this video, we'll go through both for all the different forms.

The a value tells if the parabola is concave up or concave down
Standard Form Graphs

Standard Form

Let's begin with standard form, y = ax^2 + bx + c. There it is in general form, and here are a few specific examples of what one might look like: y = x^2 + x + 1 and y = -4x^2 - 5x + 9.

To be completely honest, the main reason this one makes the cut as a useful form is because it's the easiest and most basic to write. While the other forms will require some fancy rearranging with algebra tricks, like factoring or completing the square, most quadratics will be in standard form straight from the beginning. This means that you can dive right into the problem from the get-go, while the other forms will often make you do work before you can even begin. Once we get past that, though, standard form doesn't have too much to offer. Perhaps, its most useful trait is that the a value tells you whether the parabola is concave up (positive a value) or concave down (negative a value), but it turns out that all the forms are going to have this ability.

The second trait of standard form has to do with the y-intercept of the parabola. Since the y-intercept is where x=0, substituting this in shows us that the a and b terms drop out, leaving us with only the c value. Therefore, the c value is always the y-intercept. This is kind of cool, but substituting x=0 into the other forms to find the y-intercept is pretty easy too. The last thing you can do with standard form is calculate the axis of symmetry with the formula x = -b / 2a. Once again, while this is kind of cool, finding the axis of symmetry is possible and actually easier with the other forms.

Intercept Form

The axis of symmetry lies directly between the two roots
Intercept Form Graph

The next form we'll go over is intercept form, y = a(x - p)(x - q). This is the general form, and here are a few specific examples: y = -(x - 1)(x + 5) and y = 3(x + 5)(x + 9).

While it is true that every once in awhile you'll be given a problem that's already in intercept form, it will often be the case that you'll have to first factor the standard-form equation to make it look like intercept form. Although this can sometimes be a headache, there are advantages to doing the work. The a value will, again, tell you whether the parabola is concave up or down, and if you want to find the y-intercept, you can simply substitute in x=0 and quickly evaluate a(-p)(-q).

Where intercept form gets its name and passes standard form in usefulness, is in its ability to not just tell you where the y-intercept is but also where the x-intercepts are. Because the x-intercepts are where y=0, substituting in either p or q will give you a zero in your product, turning the entire equation into zero. Therefore, p and q are the two x-intercepts, or roots, of your quadratic. Be careful with the signs on your roots, though. Because the general equation has a -p and -q, an (x - 5) would actually mean a root at x=5, while an (x + 5) would mean a root at x= -5.

Lastly, because parabolas are symmetrical, the axis of symmetry must lie directly in between the two roots. This means you can find it on your graph by working your way into the middle or algebraically by calculating the average between the two points: x = (p + q)/2.

Vertex Form

The h and k values represent the vertex of the parabola
Vertex Form Parabolas

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 49 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Click "next lesson" whenever you finish a lesson and quiz. Got It
You now have full access to our lessons and courses. Watch the lesson now or keep exploring. Got It
You're 25% of the way through this course! Keep going at this rate,and you'll be done before you know it.
The first step is always the hardest! Congrats on finishing your first lesson. Go to Next Lesson Take Quiz
Way to go! If you watch at least 30 minutes of lessons each day you'll master your goals before you know it. Go to Next Lesson Take Quiz
Congratulations on earning a badge for watching 10 videos but you've only scratched the surface. Keep it up! Go to Next Lesson Take Quiz
You've just watched 20 videos and earned a badge for your accomplishment! Go to Next Lesson Take Quiz
You've just earned a badge for watching 50 different lessons. Keep it up, you're making great progress! Go to Next Lesson Take Quiz
You just watched your 100th video lesson. You have earned a badge for this achievement! Go to Next Lesson Take Quiz
Congratulations! You just finished watching your 200th lesson and earned a badge! Go to Next Lesson Take Quiz
Congratulations! You just finished watching your 300th lesson and earned a badge! Go to Next Lesson Take Quiz
You are a superstar! You have earned the prestigious 500 video lessons watched badge. Go to Next Lesson Take Quiz
Incredible. You have just entered the exclusive club and earned the 1000 videos watched badge. Go to Next Lesson Take Quiz
You have earned a badge for watching 20 minutes of lessons.
You have earned a badge for watching 50 minutes of lessons.
You have earned a badge for watching 100 minutes of lessons.
You have earned a badge for watching 250 minutes of lessons.
You have earned a badge for watching 500 minutes of lessons.
You have earned a badge for watching 1000 minutes of lessons.