Copyright

Radical Expression: Definition, Examples & Quiz

Instructor: Jennifer Beddoe
A radical expression is any mathematical expression containing a radical symbol (√). This lesson will go into more detail about the types of radical expressions and give some examples on how to work with them in mathematics. There will be a quiz at the end of the lesson.

Definition of Radical Expression

In mathematics, a radical expression is defined as any expression containing a radical (?) symbol. Many people mistakenly call this a 'square root' symbol, and many times it is used to determine the square root of a number. However, it can also be used to describe a cube root, a fourth root or higher. When the radical symbol is used to denote any root other than a square root, there will be a superscript number in the 'V'-shaped part of the symbol. For example, 3?(8) means to find the cube root of 8. If there is no superscript number, the radical expression is calling for the square root.

The term underneath the radical symbol is called the radicand.

History of the Term Radical

The terms 'radical' and 'radicand' are both derived from the Latin word 'radix,' which means 'root'. The reason for this is that the root is the source of something (like the root of a word); if you square or cube a number, the number that it came from is the root, while the number itself (the radicand) grows from that root. The first usage of these terms was seen in England in the mid 1600s. They were first used in a book called An Introduction to Algebra by John Pell.

Problem Solving

To solve a problem involving a square root, simply take the square root of the radicand. The square root of a number is the number that, when multiplied by itself, or squared is equal to the radicand.

For example, ?(25) = 5 because 5 x 5 = 25

If there is a subscript number in front of the radical symbol, that number tells you how many times a number should be multiplied by itself to equal the radicand. It is the opposite of an exponent, just like addition is the opposite of subtraction or division is the opposite of multiplication.

Back to the example in the first paragraph with the cube root of 8, 3?(8) = 2 because 2^3 = 8 or 2 x 2 x 2 = 8.

Similarly, 5?(243) = 3 because 3^5 = 243 (3 x 3 x 3 x 3 x 3 = 243).

Examples

1.) Solve ?(64)

Since 8^2 = 64 the square root of 64 is 8, so the answer to this problem is 8.

2.) Solve 3?(343)

The cube root of 343 is 7 (7^3 = 343)

3.) 5?(243)

3 (3^5 = 243)

Special Cases

There are certain circumstances where finding the root of a number is impossible or the result might be something unexpected.

To unlock this lesson you must be a Study.com Member.
Create your account

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member

Already a member? Log In

Earning College Credit

Did you know… We have over 100 college courses that prepare you to earn credit by exam that is accepted by over 2,900 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You now have full access to our lessons and courses, watch the lesson now or keep exploring.
You've watched a video! Now you are officially smarter, check out the next video or take the quiz to keep learning.
You took a quiz! Getting a perfect score on a quiz is how you gain course progress. If you aced it, great job! If not, don't worry, you can try again.
You now have full access to our lessons and courses, watch the lesson now or keep exploring.
You just finished your first lesson. Study.com has thousands of lessons to help you meet your educational goals.
You're making great progress. Aim to watch at least 30 minutes of lessons each day and you'll master this before you know it!
You've learned so much, but only scratched the surface. Wait until you see what we have in your next lesson!
Getting a perfect score on a quiz is how you gain course progress. If you aced it, great job! If not, don’t worry, you can try again.
You're getting the hang of this! Keep taking quizzes to make progress on your learning goals.
Look how far you've come! Take all the quizzes in a chapter and you'll master this topic in no time.
Keep clicking that 'next lesson' button whenever you finish a lesson and its quiz.
You're 25% of the way through this course! Keep going at this rate and you'll be done before you know it.
Two days in a row, nice! Keep your streak going to get the most of your learning and reach your goal faster.