Back To Course

ELM: CSU Math Study Guide16 chapters | 140 lessons

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Jennifer Beddoe*

In order to write radical expressions correctly, they have to be written in their simplest form. This lesson will show you how to simplify expressions containing numbers and variables inside a square root.

No matter where you live, the language of mathematics is the same. You might not be able to order dinner in a restaurant in South America, but by using the unique language that is math, you can work problems with anyone from any country. This is why it is very important that mathematical equations get treated the same no matter who is writing them.

The term '**radical**' is just another way to say 'square root.' When writing square roots in correct mathematical language, it is important that every radical is written in its simplest form. This applies to both the numbers and variables that are under the square root symbol.

Below you see some examples of radicals that contain both numbers and variables. Some of them are simplified and others aren't. Can you tell which examples need to be simplified further?

Of these four examples, numbers 1, 3 and 4 can all be simplified further.

Here are the steps to simplifying a square root with a number:

1. First, factor the number completely. An easy way to factor a number is by using a **factor tree**. A factor tree can be created by writing down the number you want to factor and drawing two lines coming down from that number. Then, write two factors of that number under the lines. Continue on in this manner until only **prime numbers** remain. A prime number is one that cannot be reduced any smaller. The purpose of the factor tree is to determine which numbers can be removed from under the square root symbol.

2. Match up pairs of the same number. Any numbers with a partner are perfect squares and you can take the square root of those numbers.

3. Numbers without a partner remain under the square root symbol. These numbers cannot be simplified further.

Let's return to the examples from earlier and look only at the number portion of some of them.

The first example is âˆš81*x*^4.

Looking at just the number portion, factor 81. 9*9 is 81, and then 3*3 is 9; therefore the factorization of 81 is 3*3*3*3, which is two groups of 3. Each group means a 3 will be removed from underneath the radical, which means that the square root of 81 is 3*3, or 9.

The âˆš13*xy* is the second example.

Since 13 is a prime number, it cannot be factored and therefore is as simple as it can be and no changes can be made.

Before we can talk about finding the square root of a variable, we should probably review what exactly the square root is. The **square root** operation is the opposite of squared. This works for both numbers and variables. So, *x***x* = *x*^2, and by performing the opposite operation, âˆš*x*^2 = *x*.

Simplifying square roots of variables works about the same way as it does with numbers. Just like you can factor numbers, variables with exponents can also be factored.

For example, *x*^4 is the same as *x***x***x***x*.

Then, you can proceed the same way as simplifying the square root of numbers.

1. First, match up pairs of the same variable. Using our example from before, grouping pairs of *x*s gives us (*x***x*)*(*x***x*) - two groups of *x*s.

2. Any letters with a partner are perfect squares, and you can take the square root of them. In this case, there are two pairs of *x*s, so there will be two *x*s removed from under the square root symbol.

3. Variables without a partner remain under the square root. They cannot be simplified further.

Going back again to our examples from earlier, let's look this time at the variable portion.

The first example is *x*^4.

If we factor *x*^4, we get *x***x***x***x*.

Break that into pairs to get (*x***x*)*(*x***x*). One *x* from each pair is taken out from under the square root symbol. This leaves us with an *x*^2 outside of the square root.

The final simplification of âˆš81*x*^4 is 9*x*^2.

The second example is âˆš13*xy*, and as you can see, there is only one *x* and one *y* under the square root symbol. This means that it cannot be simplified any further; it is as simple as it can get.

Let's try the last two examples to put it all together. Example number 3 is âˆš(13(*x*^6')*y*^2).

As before, the first step is to look at the number - in this case, 13. Since 13 is a prime number, it cannot be factored.

Next, we look at the variables. *x*^6 can be factored to (*x***x*)*(*x***x*)*(*x***x*). Because there are three groups of *x*s, three *x*s will come out from underneath the radical symbol.

*y*^2 is *y***y*, which is one group of *y*s. Therefore, one *y* can be removed from under the square root symbol.

So, the simplification of this problem is (*x*^3)*y*âˆš13

Let's try the last one: âˆš((8*x*^2)(*y*^4)*z*).

Starting with the number, factor 8 to its smallest parts, which is 2*2*2. One pair of twos means that a 2 will come out of the square root symbol. The lone two will stay under the square root symbol.

Next, we move on to the variables. *x*^2 is *x***x*, which is a pair of *x*s, meaning that one *x* will come out of the square root.

*y*^4 is *y***y***y***y*. The two pairs of *y*s mean that 2 *y*s will come out of the square root.

Because the *z* is alone, it will stay underneath the square root symbol, which means that the simplification of âˆš((8*x*^2)(*y*^4)*z*) is 2*xy*^2âˆš(2*z*).

In the international world of mathematics, it is important that there is a universal language so that problems can be understood all over the world. Part of this language means that radicals, or square roots, are simplified in a certain way. To simplify a square root, first factor the numbers or variables, then pair up the like terms. Finally, remove one of each pair from under the square root symbol. Any numbers or variables without a partner remain under the square root symbol.

You should be able to simplify radicals using ordered steps after watching this video lesson.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
4 in chapter 4 of the course:

Back To Course

ELM: CSU Math Study Guide16 chapters | 140 lessons

- Developing Adaptable Teams & Employees
- Effective Delegation Skills for Supervisors
- ORELA Essential Academic Skills: Practice & Study Guide
- Math 108: Discrete Mathematics
- ORELA Elementary Education - Subtest II: Practice & Study Guide
- Developing Adaptable Employees
- Proactive Employees & Team Problem Solving
- Organizational Change Management
- Identifying Competencies & Training Needs
- Relations Between Labor & Management
- How to Request a CLEP Transcript
- CLEP Exam Dates & Testing Center Locations
- CLEP Scoring System: Passing Scores & Raw vs. Scaled Score
- Continuing Education Opportunities for Molecular Biology Technologists
- WV College & Career Readiness Standards for Social Studies
- Common Core State Standards in Ohio
- Resources for Assessing Export Risks

- Required Rate of Return (RRR): Formula & Calculation
- Fixed Phrases: Definition, Examples & Practice
- Why Do Workers Join Unions? - Benefits & Reasons
- Rigid Motion in Geometry
- Electronic Health Records & Evidence-Based Medicine
- Symmetry in Insects: Types & Examples
- Native American Mathematics: History & Mathematicians
- Behavioral Health Quality: Framework & Measurement
- Quiz & Worksheet - Animal Population Size
- Quiz & Worksheet - Psychoanalyst Anna Freud
- Quiz & Worksheet - Potassium Chromate
- Quiz & Worksheet - Understsanding Transaction Processing Systems
- Quiz & Worksheet - Decomposing Numbers
- Tourism Marketing Flashcards
- Tourism Economics Flashcards

- Biology 102: Basic Genetics
- Improving Customer Satisfaction & Retention
- Humanities 101: Intro to the Humanities
- Introduction to Statistics: Help and Review
- Precalculus for Teachers: Professional Development
- Newton's Laws in Physics
- Music Sections
- Quiz & Worksheet - Oceans & Nutrient Productivity
- Quiz & Worksheet - Marbury v. Madison
- Quiz & Worksheet - Accommodation in Psychology
- Quiz & Worksheet - Density-Dependent Factors
- Quiz & Worksheet - Forward Contracts

- What is Wind? - Definition, Causes, Properties & Characteristics
- GMAT Reading Comprehension: Overview & Question Samples
- NSF Dissertation Grant Types and Application Tips
- Animal Cell Project Ideas
- 8th Grade Persuasive Writing Prompts
- Buoyancy Experiments for Kids
- FTCE Retake Policy
- Bible Study Lesson Plan
- LSAT Writing Sample: Purpose, Timing & Scoring
- Video Game Science Fair Projects
- How to Study for the GRE
- Immigration Lesson Plan

Browse by subject