Back To Course

Math 104: Calculus14 chapters | 115 lessons | 11 flashcard sets

Watch short & fun videos
**
Start Your Free Trial Today
**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Jeff Calareso*

Jeff teaches high school English, math and other subjects. He has a master's degree in writing and literature.

In the Kingdom of Rimonn there are three rivers. In this lesson, learn how these waterways demonstrate the power of the squeeze theorem for finding the limits of functions.

Welcome to the Kingdom of Rimonn! Now in the Kingdom of Rimonn, we have three primary rivers. We have the River Euler. We have the River Newton. And we have the River Tiny. We don't exactly know where Tiny goes, but we know he starts out in the hills and he ends in the sea. We know a few things about the rivers in the Kingdom of Rimonn. We know that Euler is always north of the River Newton. We know that Tiny is always north of Newton, but south of Euler. So we know that Tiny basically is always between Newton and Euler, we just don't know exactly where he goes.

We also know that Euler and Newton meet up. They get very close in a village called Moe. So because Tiny is surrounded by Newton and Euler throughout the entire length of the river, we know that Tiny also has to meet up in the town of Moe. Because we know that Tiny doesn't cross Euler or Newton, and since they meet up at Moe, Tiny must also meet up at Moe.

This principle is known as the **squeeze theorem** in calculus. Some people call it the sandwich theorem, but I like the term squeeze.

Now let's consider the village of Moe, and let's zoom in really close where Euler and Newton meet up. I can say that the limit, as we approach Moe, of Euler is this point here. Let's call it the town square. And the limit, as we approach Moe, of Newton is also the town square. Because Euler is always north of Tiny and Tiny is always north of Newton, I can write that the limit, as we approach Moe, of Tiny is also the town square.

So let's make this really formal. If the function *g(x)* is less than or equal to *f(x)*, which is less than or equal to *h(x)*, and the limit, as we approach some number, of *g(x)* equals the limit, as we approach that same number, of *h(x)*, then we've squeezed *f(x)* such that the limit, as we approach the same number, of *f(x)* is equal to both the limit of both *g* and *h*. In this case, *h* is like Euler, *g* is like Newton and *f* is like Tiny, and *f* is squeezed in here. So the limit as we approach Moe is that town square.

The best example of the squeeze theorem in practice is looking at the limit as *x* gets really big of sin(*x*)/*x*. I know from the properties of limits that I can write this as the limit, as *x* goes to infinity, of sin(*x*) divided by the limit, as *x* goes to infinity, of *x*, as long as *x* exists as this gets really, really big. But I can also write this as the limit, as *x* goes to infinity, of sin(*x*) * 1/*x*. I can use multiplication, the product property, to divide this into two limits.

Now to use the squeeze theorem, we need to look at what possible functions might surround this sin(*x*)/*x*. What will always be bigger and what will always be smaller? Well, sin(*x*) is always going to be between -1 and 1. So perhaps I can write that sin(*x*)/*x* will always be greater than or equal to -1/*x*. And sin(*x*) will always be less than or equal to 1/*x*. So maybe we can use -1/*x* and 1/*x* to squeeze sin(*x*)/*x*. So what happens to -1/*x* and 1/*x* as *x* gets really big? Well, as *x* gets really big, -1/*x* gets really close to zero. So the limit, as *x* gets really big, of -1/*x* is 0. Similarly, if we look at 1/*x*, the limit, as *x* goes to infinity, of 1/*x* is also zero. What we have here is that as we get very large, sin(*x*)/*x* is surrounded by things that are going to zero. So the limit, as *x* gets really large, of sin(*x*)/*x* must be zero.

So to recap, when you're thinking about the **squeeze theorem**, think of the kingdom of Rimonn, and think about what has to happen to the rivers of Newton, Euler and Tiny as we approach the village of Moe. Because Euler and Newton are going through the town square of Moe, Tiny must also. This is the same thing as saying if *g(x)* is less than or equal to *f(x)*, which is less than or equal to *h(x)*, and the limit, as we approach some number, of *g(x)* equals the limit, as we approach that number, of *h(x)*, then *f(x)* must also approach that number.

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
6 in chapter 5 of the course:

Back To Course

Math 104: Calculus14 chapters | 115 lessons | 11 flashcard sets

- Go to Continuity

- Team Building Skills for Supervisors
- Stakeholder Agility for Leaders
- Developing Adaptable Teams & Employees
- Effective Delegation Skills for Supervisors
- ORELA Essential Academic Skills: Practice & Study Guide
- Leadership Styles & Skills
- Internal & External Stakeholder Relationships
- Team Communication & Delegation
- Team Goals, Objectives, Charters & Plans
- New Teams & Team Members
- How to Request a CLEP Transcript
- CLEP Exam Dates & Testing Center Locations
- CLEP Scoring System: Passing Scores & Raw vs. Scaled Score
- Continuing Education Opportunities for Molecular Biology Technologists
- WV College & Career Readiness Standards for Social Studies
- Common Core State Standards in Ohio
- Resources for Assessing Export Risks

- Flow Rate: Definition & Equation
- How to Use the Distributive Property with Fractions
- What is Biogenesis? - Definition & Theory
- The Effect of Leadership Turnover & Succession
- Development of Chemotherapy
- How to Solve Quadratics with Complex Numbers as the Solution Lesson Plan
- Strategies for Making Team Meetings More Productive
- Economic Systems & Global Trade Overview Activities for High School
- Quiz & Worksheet - Business Model Prototyping
- Quiz & Worksheet - Uniformed Services Roles in Hospitality
- Quiz & Worksheet - Robert Boyle's Accomplishments
- Quiz & Worksheet - Domain & Range of Trig Functions
- Quiz & Worksheet - Retaliation in the Law
- Tourism Marketing Flashcards
- Tourism Economics Flashcards

- Remedial 12th Grade English
- SAT Prep: Practice & Study Guide
- Earth Science 101: Earth Science
- AP English Literature: Tutoring Solution
- Intro to Criminal Justice: Help and Review
- CSET Math: Functions
- Literary Forms & Genres for 10th Grade Lesson Plans
- Quiz & Worksheet - Psychological Theories of Crime
- Quiz & Worksheet - Social Classes in Early China
- Quiz & Worksheet - Jeffersonian Republicanism
- Quiz & Worksheet - Music Notation Symbols

- Crime: Legal Characteristics & General Features
- Physiognomy: Definition & Examples
- How to Pass the Series 6 Exam
- Word Building Games for Kids
- Florida State Standards for Math
- Does Your High School GPA Matter?
- Indiana Biology Standards
- How to Pass the Series 63
- Online Training Courses with Certificates
- New York State Science Standards
- 8th Grade Math Games
- FSA Test Tips

Browse by subject