Squeeze Theorem: Definition and Examples

  • 0:06 Intro to the Squeeze Theorem
  • 1:22 Understanding the…
  • 2:56 Squeeze Theorem in Practice
  • 5:04 Lesson Summary
Create An Account
To Start This Course Today
Used by over 10 million students worldwide
Create An Account
Try it free for 5 days
Lesson Transcript
Instructor: Erin Lennon

Erin has taught math and science from grade school up to the post-graduate level. She holds a Ph.D. in Chemical Engineering.

In the Kingdom of Rimonn there are three rivers. In this lesson, learn how these waterways demonstrate the power of the squeeze theorem for finding the limits of functions.

Introduction to the Squeeze Theorem

Depiction of the three primary rivers and the village of Moe
Moe and Rivers

Welcome to the Kingdom of Rimonn! Now in the Kingdom of Rimonn, we have three primary rivers. We have the River Euler. We have the River Newton. And we have the River Tiny. We don't exactly know where Tiny goes, but we know he starts out in the hills and he ends in the sea. We know a few things about the rivers in the Kingdom of Rimonn. We know that Euler is always north of the River Newton. We know that Tiny is always north of Newton, but south of Euler. So we know that Tiny basically is always between Newton and Euler, we just don't know exactly where he goes.

We also know that Euler and Newton meet up. They get very close in a village called Moe. So because Tiny is surrounded by Newton and Euler throughout the entire length of the river, we know that Tiny also has to meet up in the town of Moe. Because we know that Tiny doesn't cross Euler or Newton, and since they meet up at Moe, Tiny must also meet up at Moe.

Understanding the Squeeze Theorem

Understanding the squeeze theorem
Understanding the Squeeze Theorem Equations

This principle is known as the squeeze theorem in calculus. Some people call it the sandwich theorem, but I like the term squeeze.

Now let's consider the village of Moe, and let's zoom in really close where Euler and Newton meet up. I can say that the limit, as we approach Moe, of Euler is this point here. Let's call it the town square. And the limit, as we approach Moe, of Newton is also the town square. Because Euler is always north of Tiny and Tiny is always north of Newton, I can write that the limit, as we approach Moe, of Tiny is also the town square.

So let's make this really formal. If the function g(x) is less than or equal to f(x), which is less than or equal to h(x), and the limit, as we approach some number, of g(x) equals the limit, as we approach that same number, of h(x), then we've squeezed f(x) such that the limit, as we approach the same number, of f(x) is equal to both the limit of both g and h. In this case, h is like Euler, g is like Newton and f is like Tiny, and f is squeezed in here. So the limit as we approach Moe is that town square.

Use the product property to divide the limit into two limits
Squeeze Theorem Product Property

Squeeze Theorem in Practice

The best example of the squeeze theorem in practice is looking at the limit as x gets really big of sin(x)/x. I know from the properties of limits that I can write this as the limit, as x goes to infinity, of sin(x) divided by the limit, as x goes to infinity, of x, as long as x exists as this gets really, really big. But I can also write this as the limit, as x goes to infinity, of sin(x) * 1/x. I can use multiplication, the product property, to divide this into two limits.

To unlock this lesson you must be a Study.com Member.
Create your account

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member

Already a member? Log In

Earning College Credit

Did you know… We have over 100 college courses that prepare you to earn credit by exam that is accepted by over 2,900 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You now have full access to our lessons and courses. Watch the lesson now or keep exploring.
You've watched a video! Check out the next video or take the quiz to keep learning.
Getting a perfect score on a quiz is how you earn course progress. If you aced it, great job! If not, try again.
You now have full access to our lessons and courses, watch the lesson now or keep exploring.
You just finished your first lesson. Study.com has thousands of lessons to help you meet your educational goals.
You're making great progress. Keep it up!
Congrats on viewing 10 lessons! You're doing great.
Getting a perfect score on a quiz is how you earn course progress. If you aced it, great job! If not, try again.
You're getting the hang of this! Keep taking quizzes to make progress on your learning goals.
Look how far you've come! Take all the quizzes in a chapter and you'll master this topic in no time.
Keep clicking that 'next lesson' button whenever you finish a lesson and its quiz.
You're 25% of the way through this course! Keep going at this rate and you'll be done before you know it.
Two days in a row, nice! Keep your streak going to get the most of your learning and reach your goal faster.