The Endosymbiosis Theory: Evolution of Cells

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Evolutionary Change: Definition and Forms

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Evolutionary Chimera
  • 0:44 Cells
  • 2:20 Endosymbiosis
  • 4:05 Evidence for Endosymbiosis
  • 5:32 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Danielle Weber

Danielle teaches high school science and has an master's degree in science education.

Ever wonder why some cells are very simple and others are complex with countless organelles to remember? We will look at how simple cells evolved to become more complex cells - as well as evidence to support this.

Evolutionary Chimera

Several mythological creatures are combinations of animals. For example, the griffin is a combination of a lion and an eagle, while the jackalope is a combination of a jackrabbit and an antelope. The most notorious combination of animals is that of a lion, serpent and goat.

While this may seem like an odd combination, in Greek mythology, it was known as the Chimera. This compilation of animals had powers and traits of each of the animals involved. Now, we often use the term 'chimera' to represent an organism that is a combination of others. In our case, we will look at how the cells that make up our bodies are chimeras of older, simpler cells.


Eukaryotes are complex, can be multicellular, and can change shape.

Before we can look at how current cells evolved from ancient cells, we first need to talk a little bit about cells themselves. Cells are the basic unit of structure and function for all living things. While these cells may vary greatly between and within organisms, they all have the same basic properties. There are two basic types of cells: prokaryotic and eukaryotic.

Prokaryotic cells are simple cells with no membrane-bound organelles. They evolved from protobionts and are the oldest form of life on Earth. They do not have structural components that allow them to change shape, and they are always single-celled.

Eukaryotic cells are complex cells with membrane-bound organelles and a nucleus. They evolved from prokaryotes and, therefore, haven't been around quite as long as prokaryotic cells. They have structural components that allow them to change shape, and they can either be unicellular or multicellular.

Eukaryotic cells are the cells that make up our bodies. They also have many cell parts. While we aren't going to need to know about all of these parts to understand the evolution of cells, there are a few essential cell parts to cover.

First, we know that they have a nucleus. The nucleus is basically the brain of the cell; it tells other cell parts what to do in addition to containing the genetic material of the cell. The mitochondria are often called the powerhouse of the cell because they are responsible for making cellular energy through aerobic respiration. In plant cells, there are structures known as plastids. The plastid that you are probably most familiar with is the chloroplast. This structure is where photosynthesis - the conversion of light energy into chemical energy - takes place.


Now that we know about both prokaryotic and eukaryotic cells, let's look at the endosymbiosis theory. This theory suggests that mitochondria and plastids in eukaryotic cells were once independent prokaryotic cells. Basically, this means that once upon a time, there were three prokaryotic cells: one that was capable of aerobic respiration and converting energy, one that was capable of photosynthesis and one that was incapable of doing either of these processes. The lazy cell that was incapable of doing respiration and photosynthesis engulfed - or ate - the other cells.

Cells living inside a host cell are called endosymbionts.

Now, this may have been intentional or accidental. However, when the lazy cell engulfed the respiration cell, it was then able to make useful energy. When it engulfed the photosynthesis cell, it was then able to convert energy from the sun into stored chemical energy.

Let's go back to the term endosymbiosis to understand the role of each of these cells. You may remember that symbiosis is a close relationship between two different organisms. In this case, we are looking at the relationships between several ancient cells. The cell that ate the other cells is called the host, while the other two - the respiration and photosynthesis cells - are endosymbionts because they live within the host. It may sound like the only one benefiting in this situation is the cell that ate the other cells, but it could be that all cells are benefiting. While the lazy cell now has a source of energy and a way to convert that energy, the other cells have a safe place to live and grow.

Because all eukaryotic cells have mitochondria but not all have chloroplasts, it is thought that the host cell first engulfed the respiration cell. Quite a while later, one of these cells that contained the respiration cell engulfed the photosynthesis cell.

Evidence for Endosymbiosis

You may be wondering, at this point in time, why it is that we think endosymbiosis explains the presence of certain organelles in eukaryotic cells. Let's go back to the cell parts that we talked about earlier. Remember that mitochondria are responsible for cellular respiration and converting chemical energy into cellular energy - and that chloroplasts are responsible for photosynthesis. The prokaryotic cell that was able to perform aerobic respiration is the ancestor of the mitochondria, and the cell that was able to perform photosynthesis is the ancestor of the chloroplast.

Scientific evidence seems to show cells with prokaryotic origins are present in eukaryotic cells.
Endosymbiosis Theory evidence

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account