The HPG Axis: Hormones of Male Reproduction

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Testicular Anatomy: Structure, Terms & Diagrams

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:05 Male HPG Axis
  • 1:06 Hypothalamus and…
  • 5:00 LH and FSH
  • 6:14 Gonads and Testosterone
  • 9:50 FSH and Inhibin
  • 10:55 Lesson Summary
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Heather Adewale

Heather has taught reproductive biology and has researched neuro, repro and endocrinology. She has a PhD in Zoology/Biology.

Do you know how your body communicates? How does the brain get in touch with other parts of the body? In this lesson, you will learn about how the male's brain uses hormones to communicate to the testes as a way of regulating reproduction.

Male HPG Axis

Ah, puberty! Who doesn't miss those awkward days of pimples, voice changes, hormones raging and all the social awkwardness that come right along with it? Those were the days, right?

Okay, maybe not so much, but have you ever wondered what causes all those changes? Why does your voice all of a sudden sound like it's broken, or your face turn into a breeding ground for pimples or your hair start growing all over the place?

Behind it all are three very important structures: the hypothalamus, the pituitary and the gonads, or testicles in the case of males. Together these structures make up what is called the HPG axis.

And it all begins in the brain! Puberty, that is. You see, your brain gets tons and tons of different signals from both the outside environment and your internal environment - signals like weight, age, social cues, and others that all send information to the part of your brain called the hypothalamus.


The hypothalamus is located at the bottom, middle portion of your brain, right above another structure called the pituitary. The hypothalamus has many functions, but in this lesson, we're going to cover those involved in reproduction. These functions include:

  1. The initiation of puberty
  2. The regulation of hormones involved in male sexual behaviors and reproduction

Both of these involve key hormones within the hypothalamus. We are going to focus on one of these hormones, called GnRH. 'GnRH' is actually short for the full name of the hormone, which is 'gonadotropin-releasing hormone.' Now, while you need to know the full name of the hormone to help you understand its function, to simplify things, we're just going to call it GnRH. This hormone is involved in both functions of the hypothalamus.

At puberty, the amount of GnRH being made increases by a lot! This large increase is involved in triggering puberty. As you will see, GnRH is just one hormone in a whole cascade of hormones that control male reproduction and sexual behavior. GnRH is like a messenger that tells other hormones to jumpstart testicular function at puberty and helps control reproductive function throughout life. If you were to block GnRH, then sperm production wouldn't occur.

So, what exactly does GnRH do? Let's look at where it comes from first. You see, GnRH is made in neurons within the hypothalamus. These neurons release GnRH into a network of capillary blood vessels called the hypophyseal portal system. This system's job is to connect neurons in the hypothalamus to endocrine cells located in the pituitary - that's below the hypothalamus. GnRH is going to be released from the neurons and enter into the bloodstream, or into our hypophyseal portal system. It uses this portal system to travel to the anterior portion of the pituitary gland (that's the front portion of the pituitary gland).

GnRH is released into the blood stream through the hypophyseal portal system.
Hypophyseal Portal System GnRH

Anterior Pituitary

Once GnRH gets to the pituitary, specifically the anterior pituitary, it diffuses out of the blood and into endocrine cells that are located in the anterior pituitary. The anterior pituitary contains a number of endocrine cells that secrete hormones into the bloodstream and travel all over the body.

GnRH communicates with two specific endocrine cells within the anterior pituitary. These cells release hormones called gonadotropins. Ah - where have we heard that term before? Sounds familiar, right? Oh yes, I remember! Remember what 'GnRH' stands for? 'Gonadotropin-releasing hormone.' See, I told you that remembering its name would be important. The function of GnRH is right there in its name. It releases gonadotropin hormones from the anterior pituitary.

We'll learn more about gonadotropins later, but first let's talk about patterns of GnRH release. You see, GnRH isn't just released all at once, nor is it released all the time. It's actually released in pulses about every 60-90 minutes. Similarly, as GnRH is released in pulses, it creates similar pulses in the gonadotropins that it triggers. So, when GnRH is high, then gonadotropin release is also high, and when GnRH is low, gonadotropin release is low.

LH and FSH

Okay, so what are gonadotropins? There are two gonadotropins, actually - luteinizing hormone (or LH for short) and follicle-stimulating hormone (or FSH for short). Each of these hormones has specific roles in aiding male reproductive functions. When GnRH acts on endocrine cells containing LH or FSH, these two gonadotropin hormones are then released into the bloodstream, where they travel to the last structure in the HPG axis - the gonads. In this case, when we're talking about gonads with males, we're talking about the testicles.

Both LH and FSH target specific cells within the testicles. If you're familiar with testicular anatomy, you may recall that the testes have two main divisions. There are the seminiferous tubules where sperm production takes place and then there are the interstitial spaces, or the spaces in between the tubules that are filled with cells and tissues. Now, don't disregard those spaces in between the seminiferous tubules quite yet. You see, even though they aren't making sperm like our tubules are, they are still really important.

The two main divisions of the testes
Two Testicle Divisions

Gonads and Testosterone

It is within these spaces where the testosterone-making cells live! That's right, without these spaces, the testes wouldn't be producing any testosterone, and we all know how important the male sex hormone is!

These cells, called interstitial or leydig cells, are indeed the infamous testosterone-making cells! But, they don't do it all on their own. They need help to do this. That help comes from LH. LH from the pituitary travels down to the testes, where it acts on the interstitial cells, triggering the production of androgens, including testosterone.

Ah, now what does testosterone do? Well, we all know that it is the male sex hormone and that athletes can take it to get big muscles! But, it has more important roles than just making your muscles bigger. Most of the testosterone stays testosterone, but before we talk about its functions, let's talk about the small amount that doesn't stay testosterone.

Say around 5% of a male's testosterone is actually converted to another androgen, a super-testosterone if you will, called DHT or dihydrotestosterone. DHT is what causes all that extra hair growth that males have and enlarges the male's external genitalia - you know, all those things that makes a man, well, a man, hence the term 'super-testosterone.' Now, just wait a second, guys - before you go and start trying to figure out how to get more DHT, I feel like I should warn you: excess DHT in males is also what causes male pattern baldness…just a thought. Sorry, DHT - but now, let's get back to our main androgen, testosterone!

The first job of testosterone is to travel into the seminiferous tubules. Once inside, testosterone and our other gonadotropin, FSH (you didn't forget about that one yet, did you?), both stimulate cells called nurse cells. These are the cells that regulate and promote sperm production.

The second job of testosterone brings us to something called negative feedback. Remember how we said that GnRH is released in pulses and not continuously? That's because it's subject to a process called negative feedback. All hormones in your body need to be regulated somehow. Negative feedback does just what it says. This is when a signal, usually a hormone, is sent from one or more cells and travels back to decrease or stop the release of another hormone.

In this case, when testosterone levels get too high, the body needs a way to decrease its production. So, high testosterone sends a signal from the testes back to the hypothalamus. Once in the hypothalamus, testosterone blocks the GnRH cells.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 79 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account