Login
Copyright

The Sanger Method of DNA Sequencing

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Interpreting Tables of Scientific Data: Practice Problems

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 Sanger Sequencing Method
  • 0:57 Dideoxynucleotide Structure
  • 1:42 Dideoxynucleotides Are…
  • 4:07 Chain Termination DNA…
  • 6:50 Interpreting Sanger…
  • 8:45 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Greg Chin
The ability to determine the DNA sequence of an individual is a powerful tool for paternity questions and criminal investigations, among other uses. This lesson will describe one laboratory method that can be used to sequence DNA.

Sanger Sequencing Method

Reporter: Professor Pear, I think our readers are going to enjoy learning how forensic scientists can use DNA to distinguish between suspects like you did in the case of the Spiral Staircase Killer.

Professor Pear: Actually, there are a number of different ways a scientist can use DNA to identify a person. DNA sequence analysis has gotten more and more sophisticated over time.

Reporter: Um, why don't you just tell me about a basic method for distinguishing between two people?

Professor Pear: Well, I guess I can tell you about the method that Fredrick Sanger developed for DNA sequencing. The Sanger method allows scientists to determine the DNA sequence of a sample. There are now more sophisticated ways to analyze forensic samples, but understanding how basic sequencing works will be a good starting point for your readers.

Dideoxynucleotide Structure

Professor Pear: Sanger sequencing is really quite ingenious. It's a laboratory procedure that determines DNA sequence through the use of dideoxynucleotides. That's why it's also sometimes referred to as dideoxy sequencing.

Reporter: Uh, Professor, what is a dideoxynucleotide?

Professor Pear: Oops. Silly me. A dideoxynucleotide is a nucleotide that is missing the 3'-hydroxyl group of its sugar. It's basically a special kind of nucleotide that scientists use in the Sanger sequencing method. Let's revisit dideoxynucleotides after I tell you a little about the sequencing procedure.

Dideoxynucleotides Are Chain Terminators

Professor Pear: But before we discuss the sequencing procedure, let's consider a simple example.

Imagine you and I are playing a word game. The object of the game is for you to guess the sentence I have written based on a series of clues I provide to you. I will tell you a letter and the location of that letter in the sentence.

For instance, if I tell you the third letter from the left of the sentence is e, the first letter from the left is t, and the second letter from the left is h, you could tell me that the first three letters of this sentence are the.

Note that it doesn't matter what order I give you each clue as long as each clue provides you with a letter and position within the sentence. If I provide a clue for each character in the sentence, you can assemble a complete sentence, right?

Reporter: That makes sense, but what does it have to do with DNA sequencing?

Professor Pear: That's conceptually how Sanger sequencing works. We need two pieces of information to apply the strategy of our sentence game to DNA sequencing.

The first step in applying the Sanger method is to identify the type of nucleotide in a DNA sequence.
Type of nucleotide

First, we need to know the identity of the nucleotide. Is it a G, A, T, or C? Second, we need to know the location of the nucleotide. For instance, is it the first, sixth, or tenth nucleotide of the sequence?

Dideoxynucleotides are the answer to both of these questions.

Recall the structure of DNA. Nucleotides in a DNA molecule are held together by phosphodiester bonds. These phosphodiester bonds can form because the phosphate on the 5' end of a new nucleotide can react with the hydroxyl, or -OH group, at the 3' end of the growing DNA molecule.

A dideoxynucleotide lacks this 3'-hydroxyl group. That means that polymerase can't add another nucleotide once a dideoxynucleotide has been added to a nucleotide chain.

Chain Termination DNA Sequencing

Professor Pear: Scientists can use a mixture of regular nucleotides (abbreviated dNTP) and dideoxynucleotides (ddNTP) to sequence DNA. Let's start with a mixture of some ddGTPs, but mostly the four regular dNTPs: template DNA, buffer, one DNA primer, and DNA polymerase.

Reporter: Wait. Those ingredients sound familiar. Aren't those basically the same ingredients you use in PCR?

Professor Pear: Yes! This DNA sequencing procedure is similar to PCR, the laboratory procedure used to create copies of DNA. However, instead of a pair of DNA primers like PCR, Sanger sequencing uses only one primer. You see, the primer provides a starting reference point.

Note in our word game if you didn't know which side of the sentence your clue was using as the reference point, it quickly becomes a very difficult game. Thus, using a single primer provides a clear reference point for our sequence data.

Most of the time, DNA polymerase adds dNTPs to the primer as it forms a new DNA molecule. However, whenever it happens to add one of the rarer ddGTPs, no further nucleotides can be added because of the structure of the dideoxynucleotides. At this point, we know that the last nucleotide in this sequence is a G because we only added ddGTPs to this tube.

When a dideoxynucleotide (ddNTP) is introduced in a DNA sequence, no more nucleotides are added.
chain termination

Many, many of these reactions are taking place simultaneously in the tube, but the point at which a ddGTP is incorporated is completely random in each case. Therefore, all of these reactions are going to produce different-length DNA molecules ending in a ddGTP.

Reporter: Okay. I think I understand how to produce those fragments, but it seems like it would take forever to sort through all that data.

Professor Pear: Oh, good point. All that data probably does seem a little overwhelming. But, remember that gel electrophoresis is a good way to distinguish between DNA molecules of different sizes. Let's see what kind of results we'd get if we performed four different reactions with each of the possible ddNTPs and then analyzed that data on a gel.

Interpreting Sanger Sequencing Data

Professor Pear: Here's an example of that data in a sequencing gel.

Data in a sequencing gel
Image of DNA data

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create An Account
Support