Understanding and Graphing the Inverse Function

  • 0:06 Inverse Functions
  • 2:24 Five Steps to…
  • 2:46 Examples
  • 5:31 Graphing Inverse Functions
  • 6:52 Lesson Summary
Create An Account
To Start This Course Today
Used by over 10 million students worldwide
Create An Account
Try it free for 5 days
Lesson Transcript
Instructor: Erin Lennon

Erin has taught math and science from grade school up to the post-graduate level. She holds a Ph.D. in Chemical Engineering.

If you use a function to map a to b, is there a way to go back from b to a again? Learn how to find and graph inverse functions so that you can turn a into b and back into a.

Inverse Functions

If I tell you that I have a function that maps the number of feet in some distance to the number of inches in that distance, you might tell me that the function is y=f(x) where the input x is the number of feet and the output y is the number of inches. You might even tell me that y = f(x) = 12x, because there are 12 inches in every foot. But what if I told you that I wanted a function that does the exact opposite? What if I want a function to take the number of inches as input and return the number of feet as output? Could you tell me what this function is?

Inverse functions are exactly that. If we have a function y=f(x), then the inverse function is written as y= f^(-1)(x), and it does the exact opposite of the function. What happens if you put a function and its inverse into a composite function such as f^(-1)(f(x))? First, we evaluate the inner function, f(x), then we're going to evaluate the outer function f^(-1)(x).

Let's take a look at an example. Say we start with 4 feet. Well, our function is f(x)=12x because there are 12 inches in every foot. If we plug in 4 feet to start, then f(4) = 12 * 4 = 48 inches. Now if we take the inverse function, and the inverse function is going to be f^(-1)(x) = x(1/12). So, if we take 48 inches, then our inverse function, f^(-1)(48) = 48 / 12 = 4 feet. Okay, so you might be able to find f(x) and f^(-1)(x) just based on your understanding of inches and feet, but how do you do it in general?

Five Steps to Inversing a Function

  1. Write your function out in terms of x and y: y=f(x).
  2. Swap the x and y variables: x=f(y).
  3. Solve for y as a function of x.
  4. Set y = f^(-1)(x).
  5. Check the composite function: f^(-1)(f(x)).


Graph of f(x) = 3x - 6 and its inverse
Graphing Inverse Function Graph

Following these steps, let's say we have a function f(x) = 3(x - 1) + 2.

We're going to write this out in terms of x and y: y = 3(x - 1) + 2. Then we're going swap the x and y variables, so we're going to write this as x = 3(y - 1) + 2. This can be a confusing step if you're not careful, but at its heart, all you're doing is putting x everywhere you see y and putting y everywhere you see x. Then you're going to solve for y as a function of x. So I'm going to subtract 2 from both sides, x - 2 = 3(y - 1), divide both sides by 3, (x - 2) / 3 = y - 1 and add 1 to both sides and I end up with y = 1 + (x - 2)/3.

I'm going to call what's on the right-hand side my inverse function, f^(-1)(x) = 1 + (x-2)/3. Finally, I'm going to check my answer, so I'm going to find f^(-1) of (f(x)). To do this, I'm going to write f(x) = 3(x-1) + 2. I'm going to plug that in as input for my inverse function, so f^(-1)(x) = 1 + ((3(x-1) + 2) - 2)/3. I have my input here, so I'm just going to solve and simplify for f^(-1)(x) = 1 + (3(x-1))/3: f^(-1)(x) = 1 + x - 1. And sure enough, f^(-1)(f(x)) = x, which is exactly what we'd expect.

So what about a function like y = round(x)? Remember that round(x) just rounds our input to the nearest integer: round(4.2) = 4. However, round(4.8) = 5 and round(5.1) = 5. In this case, do you think that you can find an inverse function that can take 5 and give your either 5.1 or 4.8? No, round(x) is a function that has no inverse.

Graphing Inverse Functions

Graph of the final complex function and its inverse
Complex Function Graph

To unlock this lesson you must be a Member.
Create your account

Unlock Your Education

See for yourself why 10 million people use

Become a member and start learning now.
Become a Member

Already a member? Log In

Earning College Credit

Did you know… We have over 100 college courses that prepare you to earn credit by exam that is accepted by over 2,900 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Welcome to a video lesson! You now have full access to our video lessons, watch this video now if you are ready or keep exploring the other features you have available to you.
You've watched a video! Now you are officially smarter, check out the next video or take the quiz to keep learning.
You took a quiz! Getting a perfect score on a quiz is how you gain course progress. If you aced it, great job! If not, don't worry, you can try again.