Back To Course

UExcel Physics: Study Guide & Test Prep17 chapters | 188 lessons

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*David Wood*

David has taught Honors Physics, AP Physics, IB Physics and general science courses. He has a Masters in Education, and a Bachelors in Physics.

After watching this lesson, you will be able to answer questions on mirrors, stating whether an image is real or virtual, upright or inverted, and larger or smaller. A short quiz will follow.

When you stand in front of a mirror, an image of you is created. You use this image to fix your hair, to put on make-up, or get an eyelash out of your eye. Those images are incredibly useful. And for a plane mirror, we all have a pretty good idea what that image will look like from experience.

But not all mirrors are flat. Convex and concave mirrors can produce images that are bigger than you, smaller than you, upright or inverted, and images that could either be **real** (images that form in front of the mirror so you can project onto a screen or blank piece of paper), or **virtual** (images that form behind the mirror so you can't project it onto a screen).

A regular, flat mirror creates an image that's the same size as you, virtual (behind the mirror), and upright. But for more complex mirror situations, we need to find ways to predict what the image will be like. One way we can do that is by carefully drawing ray diagrams with everything perfectly to scale. But a quicker and often more useful way is to use the power of math!

When it comes to mathematically figuring out what an image will look like, there are two main equations we need to use. The first is called the spherical mirror equation. It looks a lot like the thin lens equation, but for mirrors. Although, the terms are in slightly different places. It says that one over the object distance plus one over the focal length of the mirror is equal to one over the image distance. Just like with the thin lens equation, which is explored in more detail in another lesson, there are important sign conventions we need to know and use.

A positive focal length, *f*, represents a **concave (or converging) mirror** that brings light rays closer together. A negative focal length, *-f*, represents a **convex (or diverging) mirror** that spreads light rays further apart. The object distance is always negative because it's always behind the mirrored surface. But the image distance is positive if the image is real (formed in front of the mirror) and negative if the image is virtual (formed behind the mirror). These sign conventions are extremely similar to those used for the lens equation. The distances can be measured in meters or centimeters, whatever is convenient, as long as you use the same units for all your numbers.

By plugging numbers into the spherical mirror equation we can figure out where the image forms from left to right on our ray diagrams. We can, therefore, state whether an image is real or virtual. So, that's one of our three questions answered.

To figure out if the image is bigger or smaller and if it's upright or inverted, we need to use the magnification equation. This equation says that the magnification factor, *M* (for example, 3 for 3 times as big, or 0.5 for half as big), is equal to the image height, *hi*, divided by the object height, *ho*, which is equal to the image distance divided by the object distance. The image distance and the object distance follow the same sign convention as in the mirror equation. But now we also have a sign convention for the heights of the image. A positive image height represents an upright image, whereas a negative image height suggests an inverted image.

So, by using the magnification equation, we can figure out if the image is bigger or smaller by getting a number for the magnification. And, we can figure out if the image is upright or inverted by calculating the image height and looking at whether it has a positive or negative sign.

Such an equation heavy lesson definitely needs an example. Let's say you're stood in front of a spherical fun-house mirror, and your height is about 1.25 meters. The part of the mirror you're looking at is concave and has a focal length of 1.5 meters. If you stand at a distance of 2 meters away, is the image of you (a) real or virtual, (b) larger or smaller, and (c) upright or inverted?

Okay, so with any physics problem, the first thing we should do is write down what we know. We know that the focal length, *f*, of the mirror is 1.5 meters, and the object distance, *do*, is 2 meters. So, we want to know *di* to figure out if it's real or virtual, and we want to know *M* to see if it's larger or smaller. Last of all, we'll need to find *hi* to see if the image is upright or inverted.

So, let's start by using the mirror equation to calculate *di*. (1 / -2) + (1 / 1.5) = (1 / *di*). Just to be clear, it's -2 because with mirrors the object is always in front of the mirror, and it's positive 1.5 because it's a concave mirror. Plug numbers in, and we get 1/*di* = 1/1.5 + 1/-2. Take the reciprocal of both sides and solve.

This gives us an image distance of 6 meters. So, our image is 6 meters in front of the mirror - in front because it's a positive number. If the image forms in front of the mirror, if the number is positive, then it's a real image. So, that's the answer to part (a).

Next, we need to see if it's larger or smaller. The magnification, *M*, is equal to the image distance divided by the object distance. 6 / -2 gives us -3. So, the image is 3 times the size of you. Or, in other words, the image is larger. That's the answer to part (b).

Last of all: upright or inverted? Now that we know the magnification, we can use the other part of the magnification equation to find the image height. The magnification, -3, equals the image height, which we're trying to find, divided by the object height, which is 1.25. So, the image height comes out as -3.75. And since this is a negative number, the image is inverted. That gives us our answer to part (c). So, the image is real, larger, and inverted.

Mirrors form images. If we want to be able to predict what those images will look like, we either need to draw a perfectly to scale ray diagram or use a series of equations. Whatever we use, the main things we need to know are is the image **real** or **virtual**, is the image upright or inverted, and is it larger or smaller than the object?

By using the equations and making sure to follow the sign conventions carefully, we can figure out all these things. The mirror equation looks like the equation on top, and says that one over the object distance plus one over the focal length of the mirror is equal to one over the image distance. The magnification equation looks like the one on bottom, and says that the magnification factor, *M* (for example 3 for 3 times as big, or 0.5 for half as big), is equal to the image height, *hi*, divided by the object height, *ho*, which is equal to the image distance divided by the object distance.

To figure out if the image is real or virtual, calculate the image distance: a positive image distance means the image is real, and a negative one means it's virtual. To figure out if the image is larger or smaller, calculate the magnification: a magnification bigger than 1 means the image is larger and a magnification smaller than 1 means it's smaller. And, last of all, to calculate if the image is upright or inverted, calculate the image height: if it's positive, then the image is upright, and if it's negative, then it's inverted.

All the signs can be very confusing, but if you take good notes and follow the conventions religiously, you should be able to solve any problem that comes your way.

You'll have the ability to do the following after this lesson:

- Summarize the appearance of images produced by regular and more complex mirrors
- Identify the mirror and magnification equations
- Explain how to determine whether an image is real or virtual, upright or inverted, and larger or smaller than the object
- Describe the sign conventions to use when making these determinations

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
3 in chapter 15 of the course:

Back To Course

UExcel Physics: Study Guide & Test Prep17 chapters | 188 lessons

- Go to Vectors

- Go to Kinematics

- Mirrors: Difference Between Plane & Spherical 4:20
- Ray Tracing with Mirrors: Reflected Images 4:21
- Using Equations to Answer Mirror Questions 7:22
- Using Equations to Answer Lens Questions 6:01
- Polarization of Light & Malus's Law 5:25
- Polarization by Reflection & Brewster's Law 6:21
- Diffraction & Huygen's Principle 5:42
- Single-slit Diffraction: Interference Pattern & Equations 6:04
- Double-slit Diffraction: Interference Pattern & Equations 7:47
- Multiple-slit Diffraction: Interference Pattern & Equations 5:35
- How Thin Film Interference Works 7:48
- Michelson Interferometer: Applications 5:14
- Go to Wave Optics

- Go to Relativity

- Certified Safety Professional (CSP): Exam Prep & Study Guide
- TExES Core Subjects 4-8 - Science (809): Practice & Study Guide
- TExES Core Subjects 4-8 - Social Studies (808): Practice & Study Guide
- TExES Core Subjects EC-6 - Mathematics (802): Practice & Study Guide
- TExES Core Subjects 4-8 - Mathematics (807): Practice & Study Guide
- Law & Public Policy Lesson Plans
- African-American Authors Lesson Plans
- Modern British Literature Lesson Plans & Resources
- Medieval Literature Lesson Plans & Resources
- Required Assignment for Business 323
- WV Next Generation Standards for Math
- Continuing Education Opportunities for Microbiology Technologists
- Professional Publications in Literacy
- Dyslexia Programs in Texas
- Study.com's Teacher Edition
- Study.com School Plans
- Study.com's Virtual Classrooms

- Classical Architecture: Characteristics & Elements
- Properties of Solids: Lesson for Kids
- Bernoulli's Principle: Lesson for Kids
- Main Idea: Lesson for Kids
- Developing ELL Reading Skills for Social & Academic Purposes
- Modeling With Nonlinear Graphs
- Strategies for Modeling Effective ELL Techniques for Other Teachers
- Glacier Activities & Experiments for Kids
- Quiz & Worksheet - Understanding Electronic Health Records
- Quiz & Worksheet - Infixes
- Quiz & Worksheet - Application of Domain & Range
- Quiz & Worksheet - AICD Indications & Placement
- Quiz & Worksheet - The Chocolate Touch Synopsis
- Graphs & Charts in Everyday Life Flashcards
- Interpreting & Analyzing Data Sets Flashcards

- Macroeconomics Textbook
- Middle School World History Textbook
- UExcel Political Science: Study Guide & Test Prep
- CLEP Analyzing & Interpreting Literature: Study Guide & Test Prep
- DSST Foundations of Education: Study Guide & Test Prep
- Sets: Help and Review
- Graphing Inequalities: Homeschool Curriculum
- Quiz & Worksheet - The Labor Market in Economics
- Quiz & Worksheet - Function & Structure of Villi
- Quiz & Worksheet - The Economic Man
- Quiz & Worksheet - Giant Stars and Helium Fusion
- Quiz & Worksheet - Abiotic Factors of an Ecosystem

- Using the Magnitude Scale to Compare Star Brightness
- Mary Ainsworth: Theory & Biography
- How to Pass the NAPLEX
- Federalism Lesson Plan
- How to Learn English Online
- What GPA Do Colleges Look At?
- Middle School Summer Reading List
- Dr. Seuss Bulletin Board Ideas
- DRA Reading Assessment Levels
- Books Every English Major Should Read
- Science Project Grading Rubrics
- What Is Continuing Education?

Browse by subject