Back To Course

Geometry: High School15 chapters | 160 lessons

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Watch this video lesson to learn why soda cans are cylinders and the method by which you can discover how much soda can fit inside by finding the volume. You will also learn about finding a cylinder's surface area.

Cylinders are popular shapes. Defined, a **cylinder** is a three-dimensional object with two round flat bases and one curved side. Picture a soda can and you are looking at a cylinder. These types of cans hold not only soda but also juices and other types of drinks as well. Walk into any grocery store and you will find tons of cylinders holding all kinds of goodies inside.

When it comes to cylinders, there are two measurements that you need to be concerned about. If you look at your soda cans, you will notice that they are all the same height and that the circles that make up the tops and bottoms are all the same size as well. This is because they have the same height as well as the same radius, which is the distance between the middle of the circle to the edge. It is these two measurements that determine the size of a cylinder. We label the height with *h* and the radius with *r* to make it easier for us when we are using the formulas for surface area and volume. Both formulas use both measurements.

The formula for surface area gives you the total area of all the surfaces together. Let's say you want to decorate your soda can with colorful wrapping paper. The formula for surface area will let you know how much paper you need. The formula looks like this:

Surface Area = 2 * pi * *r* * (*r* + *h*)

As long as you have your radius and height, you can go ahead and plug those values into your formula to find your answer for surface area. Let's see how this works if we have a soda can that is 6 inches high with a radius of 2 inches. We can label our *h* as 6 inches and our *r* as 2 inches. We then plug these numbers into our formula.

Surface Area = 2 * 3.14 * 2 * (2 + 6)

I've replaced the pi with its approximation of 3.14, and now all I need to do is to evaluate to find my answer. So I add the 2 and the 6 to get 8. I then multiply the 2 with the 3.14 with the 2 and then with the 8 to get my answer of 100.48 inches squared.

Surface Area = 2 * 3.14 * 2 * 8

Surface Area = 100.48 inches squared

My answer ends with my measuring unit squared, because area is always squared.

Now, if I wanted to find out how much soda the same soda can holds, I would use the formula for volume, the amount of space inside a three-dimensional object. The formula for the volume of a cylinder looks like this.

Volume = pi * *r*^2 * *h*

Again, if I had my radius and height, I can go ahead and plug those numbers in to find my answer. I already know that the soda can we are using has a height of 6 inches and a radius of 2 inches, so I can plug those numbers into the formula.

Volume = 3.14 * 2^2 * 6

I then go ahead and evaluate to find my answer. I square the 2 to get 4. I then multiply the 3.14, the 4, and the 6 together to get an answer of 75.36 inches cubed.

Volume = 3.14 * 4 * 6

Volume = 75.36 inches cubed

My answer here ends with my measuring units cubed, because volume is always cubed.

What have we learned? We've learned that **cylinders** are three-dimensional objects with two round flat bases and one curved side. Soda cans are real-world examples of cylinders. The only two measurements you need to find surface area and volume are the height and the radius. The formula for surface area is Surface Area = 2 * pi * *r* * (*r* + *h*), and the formula for volume is Volume = pi * *r*^2 * *h*. Once you have your height and radius, all you need is to plug in these numbers into your formula to find your answer.

After concluding this lesson, you should be able to:

- Define the 3-dimensional object- cylinder
- Understand the formulas for measuring cylinders
- Identify how to measure the volume of a cylinder

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
5 in chapter 11 of the course:

Back To Course

Geometry: High School15 chapters | 160 lessons

- Planes and the Polyhedron: Definition and Example 3:52
- What Are Platonic Solids? - Definition and Types 4:39
- Prisms: Definition, Area & Volume 6:12
- Pyramids: Definition, Area & Volume 7:43
- What Are Cylinders? - Definition, Area & Volume 5:09
- Spheres: Definition, Area & Volume 5:22
- Go to High School Geometry: Geometric Solids

- FTCE ESOL K-12 (047): Practice & Study Guide
- GACE Media Specialist Test II: Practice & Study Guide
- GACE Media Specialist Test I: Practice & Study Guide
- GACE Political Science Test II: Practice & Study Guide
- NES Essential Components of Elementary Reading Instruction: Test Practice & Study Guide
- 20th Century Spanish Literature
- Sun, Moon & Stars Lesson Plans
- Direct Action & Desegregation from 1960-1963
- Civil Rights Movement from the Civil War to the 1920s
- Civil Rights in the New Deal & World War II Era
- Common Core State Standards in Ohio
- Resources for Assessing Export Risks
- Preview Personal Finance
- California School Emergency Planning & Safety Resources
- Popsicle Stick Bridge Lesson Plan
- California Code of Regulations for Schools
- WV Next Generation Standards for Math

- The Chorus in Antigone
- Where is Mount Everest Located? - Lesson for Kids
- Sperm Cell Facts: Lesson for Kids
- The Motivational Cycle: Definition, Stages & Examples
- Bolivian President Evo Morales: Biography & Quotes
- Labor Unions for Physicians: Benefits & Factors
- Positive Attitude & Call Center Performance
- Chicken Facts: Lesson for Kids
- Quiz & Worksheet - Converting English Measurement Units
- Quiz & Worksheet - What Is Felony Murder?
- Quiz & Worksheet - Characteristics of Agile Companies
- Quiz & Worksheet - A Bend in the River
- Quiz & Worksheet - Sentence Fluency
- Growth & Opportunity for Entrepreneurs Flashcards
- Understanding Customers as a New Business Flashcards

- College Calculus Textbook
- US History: Credit Recovery
- Ohio Assessments for Educators - Earth & Space Science: Practice & Study Guide
- Introduction to Sociology Textbook
- UExcel Quantitative Analysis: Study Guide & Test Prep
- The Aging Population and Personal Health
- Introduction to Programming: Tutoring Solution
- Quiz & Worksheet - Role of External Environmental Changes on Risk Management
- Quiz & Worksheet - How to Find Least Common Denominators
- Quiz & Worksheet - Characteristics of Major and Minor Keys
- Quiz & Worksheet - Structure of the PSAT
- Quiz & Worksheet - Guidelines of Recording in Nursing

- Evaluating Simple Algebraic Expressions
- The Temperance Movement: Definition, Leaders & Timeline
- Opinion Writing Prompts
- GRE Writing Prompts
- Idioms Lesson Plan
- Essay Writing Prompts
- Horror Writing Prompts
- The Raven Lesson Plan
- Writing Prompts for Middle School
- Louisiana Purchase Lesson Plan
- Is the SAT a Standardized Test?
- GED Test Registration Form

Browse by subject