# What is Electrical Energy? - Definition & Examples

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is Nuclear Energy? - Definition & Examples

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:05 Electrical Energy
• 0:49 What are Electric Fields?
• 2:19 Potential Energy
• 4:18 Applications
• 6:00 Lesson Summary
Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: John Simmons

John has taught college science courses face-to-face and online since 1994 and has a doctorate in physiology.

This lesson defines electrical energy and explores its role as a form of potential energy. It also offers an explanation of how it functions within electric fields and provides examples of its applications.

## What Is Electrical Energy?

Energy is the ability to do work, where work is done when a force moves an object. We need and we use energy every day, and energy is available in all different forms. Electrical energy is energy that's stored in charged particles within an electric field. Electric fields are simply areas surrounding a charged particle. In other words, charged particles create electric fields that exert force on other charged particles within the field. The electric field applies the force to the charged particle, causing it to move - in other words, to do work.

## What Are Electric Fields?

Well, what are these electric fields? To better understand electrical energy, let's explore electric fields in a bit more detail. Electric fields are like gravitational fields in that both fields are areas surrounding an object that are influenced by the object. A gravitational field surrounds the earth, providing a force that pulls us down.

Likewise, electric fields surround charged sources and exert a force on other charged particles that are within the field. Have you ever heard the expression 'opposites attract'? This certainly applies to electric fields. The image below shows electric fields surrounding both positive and negative sources. The arrows you see illustrate the direction that a positive test charge would move if placed within the field.

Positive objects create electric fields that repel other positive objects; therefore, the arrows are pointing away from the positive source. Negative sources create electric fields that attract positive objects; therefore, the arrows you see are directed towards the negative source. It's very important to remember that the direction of the electric field always points in the direction that a positive particle would move within that field.

## Electrical Energy Is Potential Energy

Electrical energy is potential energy, which is energy stored in an object due to the object's position. Well, in terms of electrical energy, the object is the charged particle, and the position is the location of that charged particle within the electric field. The charged particle will have the potential to move, or to do work, due to the force of the electric field.

This is much like the potential energy you would have if you rode your bike to the top of the hill. Muscular contractions in your leg muscles provide the energy to move that bike to the top of the hill. The higher you move up the hill, the more potential energy the bike will contain. At the top of the hill, gravity then provides a force that would move the bike back down the hill.

In a similar manner, to move a charge in an electric field against its natural direction of motion requires effort. For example, an external force is needed to move a positive test charge away from a negative source. The exertion of work by an external force would in turn add potential energy to the object, just like working hard to ride your bike up the hill. If the force holding the charge in place is removed, the charged particle will move within the field.

Now, effort is not required to move an object from its high potential energy location to a lower potential energy location. Just like you don't need energy to coast down a hill, the positive charge doesn't need energy to move towards the negative source. Both are natural processes. Rather, the stored potential energy due to the position of the charged particle is transformed into kinetic energy, which is energy of motion.

## Applications of Electrical Energy

Now that we understand that electrical energy is the ability of a charged particle to move in an electric field, let's discuss the significance of electrical energy. Electrical energy can be used to move charged particles through a wire from a power plant to our homes and businesses. The movement of a charged particle through a wire is called current, or more commonly, electricity. Electricity is used to work various appliances in our homes.

To unlock this lesson you must be a Study.com Member.
Create your account

### Register for a free trial

Are you a student or a teacher?
What is your educational goal?
Back

Back

### Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

### Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!

Support