# What is Heat Energy? - Facts & Calculation

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: What is Heat? - Definition & Explanation

### You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 0:00 Definition of Heat Energy
• 1:05 Facts About Heat Energy
• 1:33 Conduction
• 2:40 Convection
• 6:01 Lesson Summary

Want to watch this again later?

Timeline
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!

#### Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Richard Cardenas

Richard Cardenas has taught Physics for 15 years. He has a Ph.D. in Physics with a focus on Biological Physics.

In this lesson, you will learn about heat and that heat is a form of energy. You will learn about the properties of heat and the equations that will help you calculate heat in a variety of situations.

## Definition of Heat Energy

Heat has always been a mystery. Antoine Lavoisier theorized that heat was a substance with mass. That meant that heat transfer involved the transfer of an actual substance between bodies. Unfortunately, Lavoisier's theory was not supported by experimental observation, so a better description of heat was needed.

Heat has always been confused with temperature, but the reason is that heat and temperature are related. Temperature is a quantitative measure of hotness or coldness. Solids, liquids, and gases are made up of atoms and molecules. When these atoms and molecules are moving slowly, then the temperature of that substance would be low. The faster the atoms and molecules move, the higher the temperature. Heat is the total energy of these atoms and molecules as they move. This figure shows how the speed of the atoms and molecules is related to the temperature of the substance.

The total energy of the atoms and molecules shown in the figure onscreen is what we call heat.

Here are some interesting facts and properties of heat energy. The figure here illustrates the direction of heat transfer between two substances.

Heat transfer is when heat energy flows from the object of higher temperature to an object with a lower temperature. It will never do the reverse.

Heat energy can be transferred by the following methods: conduction, convection, and radiation.

#### Conduction

Let's first look at the process of heat transfer by conduction. Consider the following situation, which you may have experienced. You have a cup of very hot coffee, and you put sugar into the coffee and use a spoon to stir the coffee. You accidentally left the spoon in the coffee when you left it on your table. Minutes later, you grab the spoon from the coffee and notice the spoon is now hot. The spoon, which was initially cold, is now nearly as hot as the coffee. This situation is an illustration of conduction. The molecules of the spoon immersed in the coffee were forced to move faster. These faster moving molecules bump into adjacent slower moving molecules and cause them to move faster, etc. After some time, all of the spoon molecules will be moving faster. Conduction is a process of heat transfer where the faster moving molecules impart their energy to slower moving molecules until the entire substance is moving with a faster speed. The figure you're looking at onscreen illustrates conduction.

#### Convection

The second heat transfer method is called convection. Ever hear of the statement that warm air rises? This statement describes convection. Convection, illustrated in the figure here, is the method of heat transfer that involves large masses of a substance circulating because of the temperature differences within that substance.

As the warmer mass rises, the cooler mass moves down and in the process heat is transferred to the cooler mass which causes it to move up.

Another interesting fact about heat is that different substances absorb as well as give off heat in varying amounts. For example, consider boiling water. Before the water boils, you can still put your hand in the water, but you can't touch the pot. What does this mean? Water takes longer to absorb heat than the metal pot containing the water. This is because the water and the pot each have a different specific heat capacity, which is the amount of heat needed to raise the temperature of a specific mass by a specific amount. Metals have a low specific heat capacity, and liquids like water have a higher specific heat capacity. This means that metals will heat up and cool down quicker than water. So, when the temperature of a substance changes, we can calculate the amount of heat transferred if we know the specific heat capacity and the mass of the substance.

The formula for heat is then:

In this equation, m is the mass of the substance and c is the specific heat capacity of the substance. The table here is a list of specific heats for a few substances:

To unlock this lesson you must be a Study.com Member.

### Register for a free trial

Are you a student or a teacher?
Back

Back

### Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.