Back To Course

SAT Prep: Help and Review37 chapters | 323 lessons

Watch short & fun videos
**Start Your Free Trial Today**

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 55,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Betty Bundly*

Betty has a master's degree in mathematics and 10 years experience teaching college mathematics.

This lesson will discuss an important acronym for the order of operations in mathematics. Without these guidelines given in PEMDAS, the accurate and objective nature of mathematical calculation could not exist.

**PEMDAS** is an acronym for the words parenthesis, exponents, multiplication, division, addition, subtraction. Given two or more operations in a single expression, the order of the letters in PEMDAS tells you what to calculate first, second, third and so on, until the calculation is complete. If there are grouping symbols in the expression, PEMDAS tells you to calculate within the grouping symbols first.

The letters PEMDAS and the words parenthesis, exponents, multiplication, division, addition, subtraction may not be very meaningful for someone trying to remember this order, so a phrase has also been attached with the letters in PEMDAS: Please Excuse My Dear Aunt Sally. If you can remember this phrase, then it may be easier to remember the order of operations given in PEMDAS.

Without PEMDAS, there are no guidelines to obtain only one correct answer. As a very simple example, to calculate 2 * 4 + 7, I could multiply first, and then add to get 15. I also have the option to add first, then multiply and get 22. Which answer is correct? Using PEMDAS, the only correct answer is 15, because the order of the letters in PEMDAS tell me that multiplication, M, should be performed before addition, A.

Here's an explanation of the rules given in PEMDAS:

- P as the first letter means you complete any calculations in grouping symbols first.
- Next, look for exponents, E. Ignore any other operation, and take any numbers with exponents to their respective powers.
- Even though M for multiplication in PEMDAS comes before D for division, these two operations actually have the same priority. Complete only those two operations in the order they occur from left to right.
- Even though A for addition is in PEMDAS before S for subtraction, these two operations also have the same priority. You look for these last two operations from left to right and complete them in that order.

Example One:

If you are told to calculate or simplify the expression 24 + 6 / 3 * 5 * 2^3 - 9, how does PEMDAS work? First, I look for any grouping symbols (P). There are none, so I then look for any exponents (E). Since I see 2^3, I will do that calculation first, without performing any other calculation.

- 24 + 6 / 3 * 5 * 8 - 9

Now, I look for multiplication (M) and division (D) from left to right, ignoring any addition or subtraction. My next series of calculations will produce the following:

- 24 + 6 / 3 * 5 * 8 - 9
- 24 + 2 * 5 * 8 - 9
- 24 + 10 * 8 - 9
- 24 + 80 - 9

- 24 + 10 * 8 - 9

- 24 + 2 * 5 * 8 - 9

Lastly, I complete addition (A) and subtraction (S) from left to right.

- 24 + 80 - 9 = 95

Example Two:

Calculate 36 - 2(20 + 12 / 4 * 3 - 2^2) + 10. Since there is a grouping symbol, I must perform all calculations in the parenthesis first, using PEMDAS for any operations in that expression.

- 36 - 2(20 + 12 / 4 * 3 - 2^2) + 10
- 36 - 2(20 + 12 / 4 * 3 - 4) + 10
- 36 - 2(20 + 3 * 3 - 4) + 10
- 36 - 2(20 + 9 - 4) + 10
- 36 - 2(25) + 10

- 36 - 2(20 + 9 - 4) + 10

- 36 - 2(20 + 3 * 3 - 4) + 10

- 36 - 2(20 + 12 / 4 * 3 - 4) + 10

Ignoring the addition and subtraction, I complete the one multiplication operation next.

- 36 - 2(25) + 10
- 36 - 50 + 10

Last, I add and subtract from left to right.

- 36 - 50 + 10 = - 4

If you encounter a calculation with one expression grouped inside another grouping, start with the innermost grouped expression and work your outward, using PEMDAS.

Example Three:

Calculate 6 + 3{72 / 3^2 - 1(2^3 - 1)^2} + 12 / 4. Since there are two grouping symbols, I start calculating the innermost grouped expression first.

- 6 + 3{72 / 3^2 - 1(2^3 - 1)^2} + 12 / 4
- 6 + 3{72 / 3^2 - 1(8 - 1)^2} + 12 / 4
- 6 + 3{72 / 3^2 - 1(7)^2} + 12 / 4

- 6 + 3{72 / 3^2 - 1(8 - 1)^2} + 12 / 4

Now, I use PEMDAS on the next level of grouping.

- 6 + 3{72 / 3^2 - 1(7)^2} + 12 / 4
- 6 + 3{72 / 9 - 1(49)} + 12 / 4
- 6 + 3{8 - 49} + 12 / 4
- 6 + 3{-41} + 12 / 4

- 6 + 3{8 - 49} + 12 / 4

- 6 + 3{72 / 9 - 1(49)} + 12 / 4

Next, I ignore the addition and complete multiplication and division from left to right.

- 6 + 3{-41} + 12 / 4
- 6 - 123 + 3

Last, I complete the addition and subtraction from left to right.

- 6 - 123 + 3
- -117 + 3 = -114

How does PEMDAS apply to a problem such as (15 + 6^2 / 4)/(3 * 7 - 3^2)? The numerator and denominator of a fraction each act as a separate grouping symbol, so you should simplify the expressions in each separately using PEMDAS. To simplify the expression (15 + 6^2 / 4)/(3 * 7 - 3^2), the steps would be as follows:

- (15 + 36 / 4)/(3 * 7 - 9)
- (15 + 9)/(21 - 9)
- 24 / 12 = 2

- (15 + 9)/(21 - 9)

Any expression in absolute value should also be treated as a grouped expression, using PEMDAS to simplify the expression inside the absolute value symbols. For example, to simplify the expression 20 - |- 32 + (-2)^3|, the steps would be as follows:

- 20 + |- 32 + (-2)^3|
- 20 + |- 32 + (-8)|
- 20 + |- 40|
- 20 + 40 = 60

- 20 + |- 40|

- 20 + |- 32 + (-8)|

**PEMDAS** is an acronym for the words parenthesis, exponents, multiplication, division, addition, subtraction. For any expression, all exponents should be simplified first, followed by multiplication and division from left to right and, finally, addition and subtraction from left to right. The word 'parenthesis' is first in this acronym to indicate that any expression in a grouping symbol, such as parentheses, should be simplified first. This order may also be memorized using the phrase *Please Excuse My Dear Aunt Sally.*

After studying this lesson on PEMDAS, discover your capacity to:

- Realize the importance of PEMDAS and recite a phrase that helps you remember the order of operations
- Use PEMDAS in mathematical expressions
- Understand the way in which PEMDAS applies to fractions and absolute value expressions

To unlock this lesson you must be a Study.com Member.

Create
your account

Already a member? Log In

BackDid you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
14 in chapter 26 of the course:

Back To Course

SAT Prep: Help and Review37 chapters | 323 lessons

- How to Divide Complex Numbers 6:40
- How to Add, Subtract and Multiply Complex Numbers 5:59
- Solve Problems Using Percents 7:50
- Percents: Definition, Application & Examples 6:20
- How to Find the Least Common Multiple 5:37
- How to Find the Prime Factorization of a Number 5:36
- How to Find the Greatest Common Factor 4:56
- Scientific Notation: Definition and Examples 6:49
- Solving Radical Equations: Steps and Examples 6:48
- Simplify Square Roots of Quotients 4:49
- Simplifying Square Roots of Powers in Radical Expressions 3:51
- Roots and Powers of Algebraic Expressions 5:00
- Radicands and Radical Expressions 4:29
- What is PEMDAS? - Definition, Rule & Examples 9:07
- What Are Prime Numbers? - Definition & Examples 5:03
- What Are Relatively Prime Numbers? - Examples & Calculations 4:38
- What are Roman Numerals? - Number Conversion & Chart 3:39
- What Are Triangular Numbers? - Definition, Formula & Examples 5:47
- What is Value in Math? - Definition & Explanation 3:34
- Zero Product Property: Definition & Examples 4:11
- Go to Math - Numbers and Operations: Help and Review

- MTEL Sheltered English Immersion: Practice & Study Guide
- C (ASCP) Technologist in Chemistry: Study Guide & Exam Prep
- MLT (ASCP) Medical Laboratory Technician: Study Guide & Exam Prep
- Pennsylvania Grades 4-8 Core Assessment - Mathematics & Science (5155): Study Guide & Test Prep
- Literary Elements Lesson Plans & Resources
- World-Class Instructional Design & Assessment
- Teaching Basic Reading Skills to English Language Learners
- Standards-Based Learning for MA ELL Students
- Instructional Strategies for Teaching Academic Language
- Second Language Acquisition in ELL Classrooms
- Popsicle Stick Bridge Lesson Plan
- California Code of Regulations for Schools
- WV Next Generation Standards for Math
- Continuing Education Opportunities for Microbiology Technologists
- Professional Publications in Literacy
- Dyslexia Programs in Texas
- Study.com's Teacher Edition

- Ataxia vs. Apraxia
- Converting Yards to Miles
- Skeletal System: Organs & Function
- Hypercompetition: Definition & Business Strategy Effects
- Amygdala Lesson Plan
- Food in the Neolithic Age
- Expressionism Quotes in The Metamorphosis
- Volcanic Mountains Lesson for Kids: Definition & Facts
- Quiz & Worksheet - Talent Management Process
- Quiz & Worksheet - Effects of Tardiness in School
- Quiz & Worksheet - Quantity in Math
- Quiz & Worksheet - Foreshadowing in The Book Thief
- Quiz & Worksheet - Types of Diodes
- Graphs & Charts in Everyday Life Flashcards
- Interpreting & Analyzing Data Sets Flashcards

- Glencoe The American Journey: Online Textbook Help
- Prentice Hall Pre-Algebra: Online Textbook Help
- AP US History Textbook
- PLACE Reading Teacher: Practice & Study Guide
- Human & Cultural Geography for Teachers: Professional Development
- Argument & Rhetorical Strategies
- SAT Subject Test Literature: Literary Periods in American History
- Quiz & Worksheet - Common Mechanisms of Heat Transfer
- Quiz & Worksheet - How China & Korea Influenced Classical Japan
- Quiz & Worksheet - Function of Plasmodesmata
- Quiz & Worksheet - How to Identify Rising Action in a Story
- Quiz & Worksheet - Desert Animal Adaptations

- Clastic Sedimentary Rocks: Definition, Types & Examples
- Pope John XXIII: Canonization, Contributions & Miracles
- South Dakota State Standards for Science
- Timeline Lesson Plan
- Florida Next Generation Sunshine State Standards
- 5th Grade Common Core Math Standards
- Curriculum Resources for High School Teachers
- How to Pass a Psychology Test
- Florida Science Standards
- Common Core Standards in Maine
- Nebraska State Science Standards
- Summer Tutoring Ideas

Browse by subject