Copyright

When to Use the Quotient Rule for Differentiation

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:06 Introduction to the…
  • 1:18 Understanding the…
  • 4:09 Quotient Rule Examples
  • 7:29 Lesson Summary
Autoplay
Autoplay
Create an account to start this course today
Try it free for 5 days!
Create An Account
Lesson Transcript
Instructor: Eric Garneau
Lo D Hi minus Hi D Lo, all over the square of what's below! Learn the quotient rule chant for differentiating functions that take the form of fractions in this lesson.

Introduction to the Quotient Rule

The quotient rule is the last of the main rules for calculating derivatives, and it primarily deals with what happens if you have a function divided by another function and you want to take the derivative of that. So let's start with f(x) = x / x^2. What is the derivative of f(x)? Is it just the top? Is it the bottom? Is it the derivative of the top times the derivative of the bottom? What is it? Well you could simplify this into 1 / x, and then f`(x) would then be -1 / x^2, because 1 / x is the same as x^-1. Then we just use our power rule. But is there a way to find that without simplifying? You won't be able to simplify in every case. Think about sin(x) / x, or (x^2 + ln(x)) / cos(x). What about those cases? You need to know the quotient rule.

Using the quotient rule in example #1
Example 1 Quotient Rule

Understanding the Quotient Rule

Let's say that you have y=u / v, where both u and v depend on x. Then you want to find dy/dx, or d/dx(u / v). There are two ways to find that. One is to use the power rule, then the product rule, then the chain rule. First you redefine u / v as uv^-1. Then you're going to differentiate; y` is the derivative of uv^-1. You need to use the product rule. So you've got y`= u(d/dx)v^-1 + v^-1(d/dx)u. Then we need to use the chain rule to differentiate v^-1, so y`= u(-1(1 / v^2)v`) + (v^-1)u`. I can rewrite this as y`= (u` / v) - (uv` / v^2). I can put all of this together by multiplying the left term by (v / v), so y` ends up being (vu` - uv`) / v^2. And that's what happens if you try to use the power rule, the product rule and the chain rule to differentiate u/v.

The second way to differentiate u / v is to use the quotient rule, which has this nice little jingle: Low d hi minus hi d low, all over the square of what's below. Here, u is the high and v is the low, so y`= (vu` - uv`) / v^2, and you end up with the same equation for y`. So if you can remember this jingle, this is definitely the way to go.

Differentiating using the quotient rule in example #2
Quotient Rule Example 2

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?
I am a teacher
What is your educational goal?
 Back

Unlock Your Education

See for yourself why 10 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back

Earning College Credit

Did you know… We have over 49 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Click "next lesson" whenever you finish a lesson and quiz. Got It
You now have full access to our lessons and courses. Watch the lesson now or keep exploring. Got It
You're 25% of the way through this course! Keep going at this rate,and you'll be done before you know it.
1
The first step is always the hardest! Congrats on finishing your first lesson. Go to Next Lesson Take Quiz
5
Way to go! If you watch at least 30 minutes of lessons each day you'll master your goals before you know it. Go to Next Lesson Take Quiz
10
Congratulations on earning a badge for watching 10 videos but you've only scratched the surface. Keep it up! Go to Next Lesson Take Quiz
20
You've just watched 20 videos and earned a badge for your accomplishment! Go to Next Lesson Take Quiz
50
You've just earned a badge for watching 50 different lessons. Keep it up, you're making great progress! Go to Next Lesson Take Quiz
100
You just watched your 100th video lesson. You have earned a badge for this achievement! Go to Next Lesson Take Quiz
200
Congratulations! You just finished watching your 200th lesson and earned a badge! Go to Next Lesson Take Quiz
300
Congratulations! You just finished watching your 300th lesson and earned a badge! Go to Next Lesson Take Quiz
500
You are a superstar! You have earned the prestigious 500 video lessons watched badge. Go to Next Lesson Take Quiz
1K
Incredible. You have just entered the exclusive club and earned the 1000 videos watched badge. Go to Next Lesson Take Quiz
20
You have earned a badge for watching 20 minutes of lessons.
50
You have earned a badge for watching 50 minutes of lessons.
100
You have earned a badge for watching 100 minutes of lessons.
250
You have earned a badge for watching 250 minutes of lessons.
500
You have earned a badge for watching 500 minutes of lessons.
1K
You have earned a badge for watching 1000 minutes of lessons.