Login

Ch 8: The Transcription and Translation Process: Biology 101 Lesson Plans

About This Chapter

The Transcription and Translation Process chapter of this course is designed to help you plan and teach the stages of protein synthesis in your classroom. The video lessons, quizzes and transcripts can easily be adapted to provide your lesson plans with engaging and dynamic educational content. Make planning your course easier by using our syllabus as a guide.

Weekly Syllabus

Below is a sample breakdown of the Transcription and Translation Process chapter into a 5-day school week. Based on the pace of your course, you may need to adapt the lesson plan to fit your needs.

Day Topics Key Terms and Concepts Covered
Monday The central dogma The transfer of genetic information from DNA to RNA to protein
Tuesday Transcription of DNA to mRNA The antisense strand, DNA promoters and terminators, the initiation, elongation and termination steps
Wednesday Regulation of gene expression The lac operon, transcriptional repression and induction
Thursday RNA processing Exons and introns, pre-mRNA, spliceosomes, the poly(A) tail, mature mRNA, stop and start codons
Friday Translation of mRNA to protein Codon recognition, tRNA and anticodons, amino acid chains, ribosome structure, polypeptide synthesis, the degenerate and universal nature of the genetic code

10 Lessons in Chapter 8: The Transcription and Translation Process: Biology 101 Lesson Plans
Protein Synthesis in the Cell and the Central Dogma

1. Protein Synthesis in the Cell and the Central Dogma

Learn the story of the central dogma and how it relates to protein synthesis. We'll use a simple analogy to explore the roles of transcription and translation in building protein from the DNA code. In this lesson, we'll also introduce the concept of a gene.

Transcription of Messenger RNA (mRNA) from DNA

2. Transcription of Messenger RNA (mRNA) from DNA

In this lesson, you will gain a thorough understanding of how transcription works. We will investigate how DNA is transcribed into RNA with the help of a promoter and RNA polymerase. Learn the purpose of messenger RNA and explore the three phases of transcription.

Regulation of Gene Expression: Transcriptional Repression and Induction

3. Regulation of Gene Expression: Transcriptional Repression and Induction

Do our genes work the same way all the time? How do we regulate the expression of our genes? Explore the various ways organisms control gene transcription through repression and induction of operons.

How An Operon Controls Transcription in a Prokaryotic Cell

4. How An Operon Controls Transcription in a Prokaryotic Cell

Is gene regulation really as simple as flipping a switch? What are the parts of an operon, and how do they function to control gene transcription? We'll study the lac operon to answer these questions.

RNA Processing in a Eukaryotic Cell: Splicing of Introns & Exons

5. RNA Processing in a Eukaryotic Cell: Splicing of Introns & Exons

In this lesson, we'll explore the unique considerations for gene regulation in the eukaryotic cell. We'll walk through RNA splicing of introns and exons and the addition of the 5' cap and poly(A) tail.

What Is the Genetic Code That Translates RNA Into Amino Acids?

6. What Is the Genetic Code That Translates RNA Into Amino Acids?

How is RNA translated into a series of amino acids? Learn the language of the genetic code, explore a codon dictionary, and discover some basics of genetics in this lesson on translation.

Making Sense of the Genetic Code: Codon Recognition

7. Making Sense of the Genetic Code: Codon Recognition

Explore the genetic code and how it is translated into a polypeptide. We'll practice using the RNA codon chart and learn the basics of codon recognition.

Codon Recognition: How tRNA and Anticodons Interpret the Genetic Code

8. Codon Recognition: How tRNA and Anticodons Interpret the Genetic Code

How does codon recognition work at the molecular level? Can you use tRNA and anticodons to decipher the genetic code? Learn the mechanics of codon recognition and build a polypeptide from a sample genetic code.

The Role of Ribosomes and Peptide Bonds in Genetic Translation

9. The Role of Ribosomes and Peptide Bonds in Genetic Translation

Ribosomes play a major role in the process of genetic translation. In this lesson, learn about the structure of ribosomes and how peptide bonds help to create chains of amino acids.

Translation of mRNA to Protein: Initiation, Elongation & Termination Steps

10. Translation of mRNA to Protein: Initiation, Elongation & Termination Steps

Translation, the second part of the central dogma of molecular biology, describes how the genetic code is used to make amino acid chains. In this lesson, explore the mechanics involved in polypeptide synthesis. Learn the three major steps of translation as you watch tRNA, mRNA, and ribosomes go to work.

Earning College Credit

Did you know… We have over 95 college courses that prepare you to earn credit by exam that is accepted by over 2,000 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Support