Calculate the following antiderivative. Show your work. \int \left( x+ \frac {1}{x}-\sin (x)...

Question:

Calculate the following antiderivative. Show your work.

{eq}\int \left( x+ \frac {1}{x}-\sin (x) \right ) dx {/eq}

Answer and Explanation:

We are given:

{eq}\displaystyle \int \left( x+ \frac {1}{x}-\sin (x) \right ) dx {/eq}


Apply integral sum rule:

{eq}=\displaystyle \int x\ dx + \int \frac{1} {x} \ dx- \int \sin(x) \ dx {/eq}


Apply common integrals:

{eq}=\displaystyle \dfrac{x^{1+1}}{1+1} +\ln x +\cos(x) + C {/eq}

{eq}=\displaystyle \dfrac{x^{2}}{2} +\ln x +\cos(x) + C {/eq}


Therefore the solution is:

{eq}\displaystyle{\boxed{ \int \left( x+ \frac {1}{x}-\sin (x) \right ) dx=\dfrac{x^{2}}{2} +\ln x +\cos(x) + C . }} {/eq}


Learn more about this topic:

Loading...
Indefinite Integrals as Anti Derivatives

from Math 104: Calculus

Chapter 12 / Lesson 11
7.6K

Related to this Question

Explore our homework questions and answers library