Copyright

Consider the following function f(x) = \begin {cases} x^3+5, & \ \text{if} \ x \leq 0 \\ x^2...

Question:

Consider the following function {eq}f(x) = \begin {cases} x^3+5, & \ \text{if} \ x \leq 0 \\ x^2 +8x, & \ \text{if} \ x>0 \end {cases} {/eq}

a. Find the critical numbers.

b. Find the open intervals on which function is increasing or decreasing.

Critical Numbers

The Critical Numbers of a function can be values in which the function changes (it can end increasing and begin to decrease or finish decreasing and begin to increase). In the same sense, the intervals of increase or decrease of a function can be observed in a graph of the function.

Answer and Explanation:

We have the function

{eq}f(x) = \begin {cases} x^3+5, & \ \text{if} \ x \leq 0 \\ x^2 +8x, & \ \text{if} \ x>0 \end {cases} \\ {/eq}

Graph the function

We can find the critical points by zeroing the first derivative or when the first derivative does not exist.

Differentiating the function {eq}f(x)=x^3+5\\ f'(x)=3x^{2} \\ {/eq}

{eq}f'(x)=0 {/eq} when {eq}x=0 {/eq}

Therefore,

a.Critical numbers at:

{eq}x=0 \\ {/eq}

b. Find the open intervals on which function is increasing or decreasing.

{eq}\begin{array}{r|D{.}{,}{5}} Interval & {-\infty<x<0} & {0<x<\infty} \\ \hline Test \space{} value & \ x=-1 & \ x=1 \\ Sign \space{} of \ f'(x) & \ f'(-1)>0 & \ f'(-1)>0 \\ Conclusion & increasing & increasing \\ \end{array} \\ \therefore \text{increasing's interval is } \space{ } \ (-\infty, \infty) {/eq}


Learn more about this topic:

Loading...
Finding Critical Points in Calculus: Function & Graph

from CAHSEE Math Exam: Tutoring Solution

Chapter 8 / Lesson 9
197K

Related to this Question

Explore our homework questions and answers library