# Evaluate the indefinite integral. (Use C for the constant of integration.) Integral of sin(2x)...

## Question:

Evaluate the indefinite integral. (Use {eq}C {/eq} for the constant of integration.)

{eq}\int \sin(2x) \sqrt{\cos(2x) + 8} \, \mathrm{d}x {/eq}

## Answer and Explanation:

Given integral is :

{eq}\int \sin(2x) \sqrt{\cos(2x) + 8} \, \mathrm{d}x\\ \mathrm{Apply\:u-substitution:}\:u=2x\\ =\frac{1}{2}\cdot \int \:\sin \left(u\right)\sqrt{\cos \left(u\right)+8}du\\ \mathrm{Apply\:u-substitution:}\:v=\cos \left(u\right)+8\\ =\frac{1}{2}\cdot \int \:-\sqrt{v}dv\\ \mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1\\ =\frac{1}{2}\left(-\frac{v^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)+c\\ \mathrm{Substitute\:back}\:v=\cos \left(u\right)+8,\:u=2x\\ =\frac{1}{2}\left(-\frac{\left(\cos \left(2x\right)+8\right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)+c\\ =-\frac{1}{3}\left(\cos \left(2x\right)+8\right)^{\frac{3}{2}}+C\\ {/eq}

#### Ask a question

Our experts can answer your tough homework and study questions.

Ask a question Ask a question#### Search Answers

#### Learn more about this topic:

#### Explore our homework questions and answer library

#### Our tutors are standing by

Ask a study question and one of our experts will send you an answer within hours.

To ask a site support question, click here

### Your question has been submitted!

When your answer is ready, it will appear on your Dashboard.

New! Get a text message when your answer is ready

Get Text AlertsNew! Get a text message when your answer is ready

Thanks! We'll text you when your answer is ready!