Evaluate the integral by making an appropriate change of variables. \iint_{R} 9e^{10x + 10y} dA,...


Evaluate the integral by making an appropriate change of variables.

{eq}\displaystyle \iint_{R}9e^{10x + 10y}\,dA {/eq},

where {eq}R {/eq} is given by the inequality {eq}10|x| + 10|y| \leq 10 {/eq}.

The Integral Defined Using Substitution:

The substitution method, where we properly change one variable to another, is used to facilitate the calculation of the integral. We apply this method when we derive a part of the integral so that the other part of it is reproduced. We can also obtain this result through algebraic procedures. This method can be applied to indefinite integrals and definite integrals. In indefinite integrals, only the replacement in the function that is integrated is applied. However, when it is a definite integral, the change in the integration limits is also made, placing these limits in terms of the new variable.

This method is very important because it facilitates the solution for a wide variety of integrals. It can be used as the sole solution method or be combined with other methods.

Answer and Explanation:

Become a Study.com member to unlock this answer! Create your account

View this answer

{eq}\eqalign{ & {\text{First, we find the integration limits by solving the given inequality:}} \cr & 10\left| x \right| + 10\left| y \right|...

See full answer below.

Learn more about this topic:

How to Solve Integrals Using Substitution


Chapter 13 / Lesson 5

Related to this Question

Explore our homework questions and answers library