Copyright

Evaluate the integral of (x - 9)/(x^2 - 3x - 18) dx, using the method of partial fraction...

Question:

Evaluate the integral {eq}\int \frac{x - 9}{x^2 - 3x - 18} \, \mathrm{d}x {/eq}, using the method of partial fraction decomposition.

Integration by Partial Fraction:

{eq}\\ {/eq}

We know that a rational function is the function of the form {eq}\dfrac{p(x)}{q(x)} {/eq}, where {eq}q(x)\neq 0 {/eq}. If the degree of numerator is less than the degree of denominator, then the fraction is said to be proper, otherwise it is an improper fraction.

The partial fraction conversion used in this question is stated below :-

{eq}\dfrac{px+q}{(x-a)(x-b)}=\dfrac{A}{x-a}+\dfrac{B}{x-b} \ , \ a\neq b {/eq}

Answer and Explanation:

{eq}\\ {/eq}

Using partial decomposition, the integral {eq}\displaystyle\int \frac{x - 9}{x^2 - 3x - 18} \, \mathrm{d}x {/eq} can also be written as :-

{eq}\displaystyle\int \frac{x - 9}{x^2 - 6x+3x - 18} \, \mathrm{d}x\\ \Rightarrow \displaystyle\int \frac{x - 9}{(x-3)(x - 6)} \, \mathrm{d}x \\\Rightarrow \displaystyle\int \frac{x - 3-6}{(x-3)(x - 6)} \, \mathrm{d}x\\\Rightarrow \displaystyle\int \frac{1}{x - 6} \, \mathrm{d}x-\displaystyle\int \frac{6}{(x-3)(x - 6)} \, \mathrm{d}x\\\Rightarrow \displaystyle\int \frac{1}{x - 6} \, \mathrm{d}x+2\displaystyle\int \frac{1}{x-3} \, \mathrm{d}x-2\displaystyle\int\frac{1}{x-6} \, \mathrm{d}x\\\Rightarrow \log|x-6|+2\log|x-3|-2\log|x-6|+C {/eq}


Learn more about this topic:

Loading...
How to Integrate Functions With Partial Fractions

from Math 104: Calculus

Chapter 13 / Lesson 9
6.8K

Related to this Question

Explore our homework questions and answers library