Copyright

Find the average square distance f from the original to a point (x, y) in the domain D. Assume...

Question:

Find the average square distance f from the original to a point (x, y) in the domain D. Assume that a = 1 and b = 4. Round the answer to three decimal places.

x = y+ a

Double Integral

This problem is based on the application of definite integrals and double integrals. To solve this problem we need to be familiar with the concept of finding the area using integrals. From the given constraints we will define the limits of integration followed by the calculation of the integrals.

Answer and Explanation:


We have,

{eq}\displaystyle f(x,y)=x^2+y^2 {/eq}

{eq}\displaystyle a=1\text{ and }b=4 {/eq}

Now,

{eq}\displaystyle x=y^2+1 {/eq}

{eq}\displaystyle 4=y^2+1 {/eq}

{eq}\displaystyle y=\pm \sqrt{3} {/eq}

{eq}\displaystyle x=4 {/eq}

So,

{eq}\displaystyle A=\int_{-\sqrt 3}^{\sqrt 3}(4-y^2-1)dy {/eq}

{eq}\displaystyle A=\left ( 3y-\frac{y^3}{3} \right )_{-\sqrt 3}^{\sqrt 3} {/eq}

{eq}\displaystyle A=4\sqrt 3 {/eq}


Let us now calculate the average square distance,

{eq}\displaystyle f_{avg}=\frac{1}{A}\int \int f(x,y)dA {/eq}

{eq}\displaystyle f_{avg}=\frac{1}{4\sqrt 3}\int_{-\sqrt 3}^{\sqrt 3}\int_{y^2+1}^{4}(x^2+y^2)dxdy {/eq}

{eq}\displaystyle f_{avg}=\frac{1}{4\sqrt 3}\int_{-\sqrt 3}^{\sqrt 3}\left ( \frac{x^3}{3}+y^2x \right )_{y^2+1}^{4}dy {/eq}

{eq}\displaystyle f_{avg}=\frac{1}{4\sqrt 3}\int_{-\sqrt 3}^{\sqrt 3}\left ( \frac{64}{3}+4y^2-\frac{(y^2+1)^3}{3}-y^2(y^2+1) \right )dy {/eq}

Expanding the bracket and applying the limits of integration, we get,

{eq}\displaystyle f_{avg}=\frac{1}{4\sqrt 3}\times \left ( 6\sqrt 3+\frac{1058\sqrt 3}{35} \right ) {/eq}

{eq}\displaystyle f_{avg}=\left ( \frac{6}{4}+\frac{264.5}{35} \right ) {/eq}

{eq}\displaystyle f_{avg}=\left ( \frac{3}{2}+\frac{264.5}{35} \right ) {/eq}

Thus,

{eq}\displaystyle \boxed{\displaystyle f_{avg}=9.057} {/eq}


Learn more about this topic:

Loading...
Double Integrals: Applications & Examples

from AP Calculus AB & BC: Help and Review

Chapter 12 / Lesson 14
18K

Related to this Question

Explore our homework questions and answers library