Find the integral of (x^2 - 14x + 10)/(x + 12) dx.


Find {eq}\; \int \frac{x^2 - 14x + 10}{x + 12} \, \mathrm{d}x {/eq}.

Answer and Explanation:

{eq}\int \frac{x^2-14x+10}{x+12}dx\\ \text{Substituting:}\\ t=x+12\\ =\int \frac{t^2-38t+322}{t}dt\\ =\int \left (t-38+\frac{322}{t} \right )dt\\ \text{Applying formulas:}\\ =\frac{t^2}{2}-38t+322\ln t\\ \text{Applying the constant of integration}\\ =\frac{(x+12)^2}{2}-38(x+2)+322\ln (x+12)+C {/eq}

Learn more about this topic:

How to Solve Integrals Using Substitution

from Math 104: Calculus

Chapter 13 / Lesson 5

Related to this Question

Explore our homework questions and answer library