Find the limit. Use L'Hospital's Rule where appropriate. If there is a more elementary method,...
Question:
Find the limit. Use L'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.
{eq}\lim_{x \to \infty}\frac{\textrm{ln} \; \sqrt{x}}{x^2} {/eq}
L'Hopital's Rule:
To apply L'Hopital's Rule we must have an indeterminacy of the form {eq}\dfrac{0}{0} {/eq} and {eq}\dfrac{ \pm \infty }{ \pm \infty }. {/eq}
L'Hopital's rule consists of deriving the numerator and denominator separately.
The application of the rule does not imply the existence of the limit.
Answer and Explanation: 1
Let's find the limit.
{eq}\displaystyle \lim_{x \to \infty}\frac{\textrm{ln} \; \sqrt{x}}{x^2} {/eq}.
Evaluating we have
{eq}\begin{align*} \displaystyle \lim_{x \to \infty} \dfrac{\textrm{ln} \; \sqrt{x}}{x^2} & = \dfrac{\textrm{ln} \; \sqrt{ \infty }}{\infty ^2} \\ &= \dfrac{\infty }{ \infty } \end{align*} {/eq}.
As {eq}\displaystyle \lim_{x \to \infty} \dfrac{\textrm{ln} \; \sqrt{x}}{x^2} = \dfrac{\infty }{ \infty } {/eq}, we can use the L'Hopital Rule.
But before applying L'Hopital let's redefine the limit by applying the properties of the natural logarithm.
Then
{eq}\displaystyle \lim_{x \to \infty} \dfrac{\textrm{ln} \; \sqrt{x}}{x^2} = \displaystyle \lim_{x \to \infty} \dfrac{1}{2} \dfrac{\textrm{ln}\; x}{x^2}. {/eq}
Applying L'Hopital, we have
{eq}\begin{align*} \displaystyle \lim_{x \to \infty} \dfrac{1}{2} \dfrac{\textrm{ln}\; x}{x^2} &= \dfrac{1}{2}\displaystyle \lim_{x \to \infty} \dfrac{\dfrac{1}{x}}{2x} \\ &= \dfrac{1}{2}\displaystyle \lim_{x \to \infty} \dfrac{1}{2x^2}\\ &= \dfrac{1}{\infty } \\ &=0. \end{align*} {/eq}
Therefore,
{eq}\boxed{\displaystyle \lim_{x \to \infty} \dfrac{\textrm{ln} \; \sqrt{x}}{x^2} =0}. {/eq}
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 9 / Lesson 9Explore L'Hopital's rule and learn who came up with this rule. See examples to understand L'Hopital's rule when limit approaches zero and when limit approaches infinity.
Related to this Question



















