If \gamma(\frac{8}{3}) = a find \gamma(\frac{1}{3}).


If {eq}\gamma(\frac{8}{3}) = a{/eq} find {eq}\gamma(\frac{1}{3}){/eq}.

Gamma Function:

Given : {eq}\gamma \left ( \frac{8}{3} \right )=a {/eq}

To find : {eq}\gamma(\frac{1}{3}) {/eq}

Formulae Used :

{eq}\gamma \left ( z+1 \right )=z\gamma \left ( z \right )\\ \gamma \left ( z \right )\gamma \left (1-z \right )=\frac{\pi}{\sin \pi z} {/eq}

Answer and Explanation:

{eq}\begin{align*} \displaystyle \gamma \left ( \frac{8}{3} \right ) &=\gamma\left ( 1+ \frac{5}{3}\right )\\ \displaystyle &=\frac{5}{3}\gamma...

See full answer below.

Become a Study.com member to unlock this answer! Create your account

View this answer

Learn more about this topic:

What is a Math Concept?

from PSAT Prep: Tutoring Solution

Chapter 10 / Lesson 13

Related to this Question

Explore our homework questions and answers library