Let F\left ( x \right ) = \int_{9}^{x}\frac{1}{ln\left ( 4t \right )}dt, \ for \ x\geq 9 . a....

Question:

Let {eq}F\left ( x \right ) = \int_{9}^{x}\frac{1}{ln\left ( 4t \right )}dt, \ for \ x\geq 9 {/eq}.

a. F?(x) = _____

b. On what interval or intervals is increasing?

c. On what interval or intervals is the graph of concave up?

First and Second Derivatives:

With the first derivative we identify critical points, also intervals of increase and decrease of the function, in addition, with the second derivative we identify points of inflection and concavity.

Answer and Explanation:

We have,

{eq}F\left ( x \right ) = \int_{9}^{x}\frac{1}{ln\left ( 4t \right )}dt \\ {/eq}

Leibniz formula for integrals:

{eq}f'(x)= \displaystyle \int_{g(x)}^{h(x)} f(t) \, dt = f(h(x))* \frac{dh}{dx} - f(g(x))* \frac{dg}{dx} \\ {/eq}

a.

Applying the Leibniz formula:

{eq}f'(x)= \displaystyle \int_{9}^{x}\frac{1}{ln\left ( 4t \right )}dt = \frac{1}{ \ln(4x) }* 1 - 0 \\ f'(x)= \frac{1}{ \ln(4x) } \\ {/eq}

b.

{eq}f'(x)=DNE {/eq} when {eq}x=0 {/eq}

b.

{eq}\begin{array}{r|D{.}{,}{5}} Interval & {0<x<\infty} \\ \hline Test \space{} value & \ x=5 \\ Sign \space{} of \ f'(x) & \ f'(5)>0 \\ Conclusion & increasing \\ \end{array} \\ {/eq}

c.

Differentiating the function

{eq}f''(x)=-\frac{ 1}{ x( \ln(x)+2 \ln(2) )^{2} } \\ {/eq}

{eq}f''(x)=0 {/eq} The function has no real solution, therefore, the function has no inflection point.

{eq}\begin{array}{r|D{.}{,}{5}} Interval & {0<x<\infty } \\ \hline Test \space{} value & \ x=5 \\ Sign \space{} of \ f'' (x) & \ f'' (5)<0 \\ Conclusion & concave \space down \\ \end{array} \\ {/eq}


Learn more about this topic:

Loading...
Finding Critical Points in Calculus: Function & Graph

from CAHSEE Math Exam: Tutoring Solution

Chapter 8 / Lesson 9
205K

Related to this Question

Explore our homework questions and answers library