# Prove x^4 + 6x^2 - 1 = 0 has exactly two solutions.

## Question:

Prove {eq}x^4 + 6x^2 - 1 = 0 {/eq} has exactly two solutions.

## Solution of Equation:

We have to prove that the given equation has exactly two solutions. First we will substitute {eq}u=x^2 {/eq} into the given equation. We will use quadratic formula to find the solution of the given equation to get the desired result.

## Answer and Explanation:

Become a Study.com member to unlock this answer! Create your account

View this answerUsing the quadratic formula we have $$\begin{align*} {x^4} + 6{x^2} - 1 &= 0{\text{ substitute }}u = {x^2}\\ {u^2} + 6u - 1 &= 0\\ u &=...

See full answer below.

#### Ask a question

Our experts can answer your tough homework and study questions.

Ask a question Ask a question#### Search Answers

#### Learn more about this topic:

from

Chapter 25 / Lesson 10Watch this video lesson to learn how you can use the quadratic formula to solve certain types of problems. Learn what kinds of equations you can solve using this formula as well as how easy it is to use this formula.