Copyright

Whats \frac{d}{dx}\ \frac{d}{dy}sin(4x^(\frac{5}{2})z^2)^*cos(in(y^2))? explain the notation

Question:

Whats {eq}\frac{d}{dx}\ \frac{d}{dy}sin(4x^(\frac{5}{2})z^2)^*cos(ln(y^2))? {/eq} explain the notation

Partial Derivative:

The derivative with respect to one variable of the multivariable function is known as the partial derivative. Also, we can use the chain rule to find the derivative of the multivariable function.

Answer and Explanation:


In the problem, we have the find the partial derivative, as we are given the d-symbol.

So we have the expression:

{eq}\frac{d}{dx}\ \frac{d}{dy}sin(4x^(\frac{5}{2})z^2)^*cos(ln(y^2)) {/eq}

The notation:

{eq}\frac{d}{dx}\ \frac{d}{dy}sin(4x^(\frac{5}{2})z^2)^*cos(ln(y^2)) {/eq}

means that we will first find the partial derivative of the expression:

{eq}sin(4x^(\frac{5}{2})z^2)^*cos(ln(y^2)) {/eq} with respect to y and then the result is differentiated partially with respect to x.

using the expression: {eq}\frac{d}{dx} {/eq}


Now, in order to solve the expression:

{eq}\frac{d}{dx}\left(\frac{d}{dy}\sin \left(4x^{\frac{5}{2}}z^2\right)\cdot \cos \left(\ln \left(y^2\right)\right)\right)\\ {/eq}

So we solve

{eq}\frac{d}{dy}\sin \left(4x^{\frac{5}{2}}z^2\right)\cdot \cos \left(\ln \left(y^2\right)\right)\\ =\sin \left(4x^{\frac{5}{2}}z^2\right)\left(-\sin \left(\ln \left(y^2\right)\right)\right)\frac{2}{y}~~~~~~~~~~~~~~~~~~~~~~~~~~\left [ \because \frac{d}{du}\left(\cos \left(u\right)\right)=-\sin \left(u\right)~~and~~~\frac{d}{dy}\left(\ln \left(y^2\right)\right)=\frac{2}{y} \right ]\\ =-\frac{2\sin \left(4z^2x^{\frac{5}{2}}\right)\sin \left(\ln \left(y^2\right)\right)}{y}\\ {/eq}

Now we have to find the partial derivative wrt x, as follows:

{eq}\frac{d}{dx}\left(-\frac{2\sin \left(4z^2x^{\frac{5}{2}}\right)\sin \left(\ln \left(y^2\right)\right)}{y}\right)\\ =-\frac{2\sin \left(\ln \left(y^2\right)\right)}{y}\cos \left(4z^2x^{\frac{5}{2}}\right)\cdot \:10z^2x^{\frac{3}{2}}~~~~~~~~~~~~~~~~~~~~~~~\left [ \because \frac{d}{du}\left(\sin \left(u\right)\right)=\cos \left(u\right)~~~and~~~~~\frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \right ]\\ =-\frac{20z^2x^{\frac{3}{2}}\cos \left(4z^2x^{\frac{5}{2}}\right)\sin \left(\ln \left(y^2\right)\right)}{y} {/eq}


Learn more about this topic:

Loading...
Solving Partial Derivative Equations

from GRE Math: Study Guide & Test Prep

Chapter 14 / Lesson 1
1.5K

Related to this Question

Explore our homework questions and answers library