Acquired Immunity: T Cells, B Cells and Antibodies

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Antibiotics and Vaccines

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:06 Acquired Immunity
  • 2:34 Creating Antigen…
  • 4:20 T Cells
  • 8:05 B Cells
  • 9:00 Antibodies
  • 11:12 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Joshua Anderson
Have you ever wondered why some people don't ever seem to get sick? These people likely have an acquired immunity. Learn more about the immune system and how exposure to an illness one time can help your body to prevent that illness from ever occurring again.

Acquired Immunity

Acquired immunity is an immune response to a specific pathogen that can be reactivated if the pathogen is ever encountered again. Most people are already familiar with this concept. For example, everybody knows that if you've had chicken pox, you won't get it again because you've developed immunity to it. But how do we actually develop this immunity? Would you believe that acquired immunity is initially based on chance and large-scale trial and error? It may seem odd, but that's how it all starts.

The workhorses of the acquired immune system are lymphocytes, which are white blood cells that recognize and respond to a single molecular structure. Each lymphocyte is very specific and can only recognize a single antigen, or molecular structure, that is recognized by the acquired immune system. The strange part is that the antigen-binding site that a lymphocyte uses to recognize an antigen is created in an almost random fashion before the lymphocyte ever comes in contact with a foreign protein or pathogen!

So what are the chances of creating a binding site by chance that can recognize a random peptide that is made by a virus? One in a million? One in 10 million? Maybe one in 100 million? It's impossible to know what the odds really are, but if they're close to this, we're not in bad shape because immunologists estimate that our immune systems typically have about 1 trillion lymphocytes, which can recognize about 100 million different molecular structures. Even though the odds of matching a particular viral peptide with a randomly created receptor may be close to the odds of winning a multimillion-dollar lottery jackpot, our immune systems can buy enough tickets to even up the odds. In addition, all pathogens make multiple different proteins, and most of these can be chopped up into several smaller peptides that can be recognized by lymphocytes. So not only does the immune system buy 100 million tickets, but the lottery it's trying to win probably has at the very least a few hundred different jackpot winning combinations! With so many potential antigens and 100 million different antigen-binding sites to try against each foreign peptide, our immune systems stack the odds in our favor so that we win the jackpot almost every time!

Creating Antigen Receptor Diversity

Now you may still be wondering how immune cells can create so many unique antigen receptors and antibodies. Think of it in terms of creating a sandwich if you had a choice of 250 different types of bread, 200 different cheeses, 50 kinds of lunchmeat, eight different vegetables and five different condiments. Think about all of the different types of sandwiches could you make combining one bread with one vegetable, one meat, one cheese and one condiment. You could make 100 million different sandwich combinations! That's basically how a lymphocyte determines what the binding site of its antibodies or antigen receptor will be. You see, the binding sites are actually composed of five different modular amino acid sequences, and for each module, the cell has several, sometimes even hundreds of options available to it. Creating all of the possible modular sequence combinations and adding a couple of genetic tricks to multiply the combinations a couple more times would create about 100 million unique combinations. Once the combination is determined in a lymphocyte, it's locked into place for that cell and all descendants of that cell.

Now let's take a look at the different types of lymphocytes. There are two major types of lymphocytes: T lymphocytes or T cells, and B lymphocytes or B cells. These two types of lymphocytes are named and classified based on where they mature in the body. T cells mature in the thymus, and B cells mature in the bone marrow. Where they mature isn't the only difference between T and B cells. As we'll soon see, there are some major functional differences between T cells and B cells.

T Cells

As we talked about earlier, T Cells are lymphocytes that mature in the thymus. There are several different types of T cells that serve different functions in the immune system, but we're going to just talk about two of them in this lesson. The first type of T cell that we're going to talk about is the Cytotoxic T Lymphocyte, or CTL for short. The CTL's main function is to destroy infected cells before they release mature parasites. If the immune system can destroy infected cells before they release new parasites, it will be much easier to control the infection, but how does the CTL know which cells are infected with parasites? If the parasites are inside the cell, they're hidden from the CTLs, right? Well, not completely, because cells are always displaying sample peptides of internal proteins on the outside of the plasma membrane. The cells display these peptides just so that CTLs and other immune cells can monitor them and see a sample of what is inside the cell.

Diagram of an antigen binding two cells
Antigen Binding Two Cells

If the antigen receptor of the CTL binds an antigen presented on the cell surface, the CTL will kill the cell and make sure that DNA inside the cell is also destroyed so that an infected cell doesn't release viable parasites when it is killed. So what happens if a cell is infected with a virus, and then the virus instructs the cell not to present antigens on its surface? Wouldn't this allow the virus to hide from the CTLs? The short answer is yes, this allows the virus to hide from the CTLs. However, the molecule that presents antigens on a cell's surface is none other than the MHC 1 molecule, and you may remember that natural killer cells kill cells that do not express MHC 1 molecules on their plasma membrane. So, the virus may evade the CTLs only to be destroyed by natural killer cells.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account