How to Calculate Derivatives of Inverse Trigonometric Functions

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Applying the Rules of Differentiation to Calculate Derivatives

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:06 Review of Basic Trig Functions
  • 1:57 Rules of Inverse Trig…
  • 2:37 Example #1
  • 4:25 Example #2
  • 5:51 Example #3
  • 7:05 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Zach Pino
Like a metronome, trigonometric functions are regular. Even predictable. In this lesson, you will learn how to use this predictability to remember the derivative formulas for these common functions.

Review of Basic Trig Functions

Three derivative formulas to remember.

I absolutely love trig functions, like sines and cosines. I love them because they repeat, they're very predictable and quite frankly, they're pretty graphs. But one of my biggest problems with trig functions is that it's really hard to solve the inverse.

Let's say I have the function y=cos(x), and I want to know, between zero and pi, what value of x is going to give me a y of 1/2. So I want to know what the value of x is right here. Well, to do that, I need to use the inverse trig function. So in this case, I've got x=cos(y) and this graph is the inverse of the previous one. I can write it as y=cos^-1(x). Now cos^-1 is not 1/cosine, but its the arccosine. It's a totally different function. That's great. Now I just look at x=0.5, and I can find what value of y is there and solve this problem.

Okay, so I've solved that problem, but what about taking the derivative of this function? I know that if I just have cos(x), I can find the derivative very easily. The derivative of cos(x) is just -sin(x), so that's the slope of the tangent here. But what about the slope of the tangent of the arccosine of x? So if y=cos^-1(x), what is y'?

Rules of Inverse Trig Functions

In example #1, simplify by multiplying out 4x^2 and moving the 4 on top of the fraction
Inverse Trig Derivative Example 1

Well here are three more derivative formulas for you to remember. For y=cos^-1(x), y`= -1 / the square root of (1 - x^2), as long as the absolute value of x is less than 1. If y=sin^-1(x), y`= 1 / the square root of (1 - x^2), again, as long as |x| < 1. For y=tan^-1(x), y`= 1 / (1 + x^2).

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account