Back To Course

Math 102: College Mathematics15 chapters | 122 lessons | 13 flashcard sets

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Chad Sorrells*

Chad has taught Math for the last 9 years in Middle School. He has a M.S. in Instructional Technology and Elementary Education.

Measures of central tendency can provide valuable information about a set of data. In this lesson, explore how to calculate the mean, median, mode and range of any given data set.

In this lesson, we're looking at the **measures of central tendencies**. The measures of central tendency provide us with statistical information about a set of data. The four primary measurements that we use are the mean, median, mode and range. Each one of these measurements can provide us with information about our data set. This information can then be used to define how the set of data points are connected. To really examine these data points, let's take a look at a football game between the Green River Ducks and the Southland Bears.

The first measure is the **mean**, which means average. To calculate the mean, add together all of the numbers in your data set. Then divide that sum by the number of addends.

For example, let's look at the Bears' first offensive series. They had plays of 16, 14, 12 and 18 yards on their way to scoring a touchdown. To find the average number of yards, or the mean, we would first add all four of these values together: 16 + 14 + 12 + 18 = 60. Since there were four numbers in our data set, you would divide that sum by 4: 60 ÷ 4 = 15. So, the average number of yards that the Bears gained was 15 yards. The mean is used to show us the true average of a set of data.

Another measure of central tendency is the **median**, which is the middle number when listed in order from least to greatest. You may have heard the word median before, and it was likely on a highway. On a highway, you have opposite lanes of traffic. In the middle of the lanes, there is typically a grassy area or a turning area. This area in the middle of the highway is referred to as a median.

Let's return to our game in progress and see how the Green River Ducks are doing. On the Ducks' first offensive series, they had plays of 10, 6, 19, 21 and 4 yards before scoring a touchdown. Let's find the median number of yards gained by the Ducks. The first thing you need to do with this list of yardages is put the numbers in order from least to greatest. So, in order from least to greatest, we would have 4, 6, 10, 19 and 21. Now that your yardages are in order from least to greatest, find the middle number. Since there are five numbers, the middle number would be the third value. The median value of this set of data is 10. On the first offensive series for the Ducks, their median yards gained were 10 yards.

Occasionally there may be an even number of values, which would provide you with two numbers in the middle. If this occurs, you will need to average the two values. At halftime of our game, the Bears quarterback has passes of 3, 8, 9, 12, 12 and 15 yards. Let's find the median pass thrown by the Bears quarterback. The first step is to make sure your numbers are in order from least to greatest, which they are in this problem. The next step is to find the middle number. Since there are six numbers in this set, the middle numbers would be the third and fourth values. Since there are two numbers in the middle, you will average them together. Add the two numbers together, 9 + 12 = 21. Then, divide by 2: 21 ÷ 2 = 10.5. The median of this set of data is 10.5. In the first half, the Bears quarterback had a median passing yardage of 10.5 yards.

When looking at a data set, the median is used when there is an **outlier**, which is a number that is significantly greater or smaller than the rest of the data. In the second quarter, the Ducks had plays that were 21, 24, 26, 20, 56 and 20 yards. You can see that the value 56 is significantly larger than the other values. 56 would be an example of an outlier. Compared to the other yards that the Ducks gained, 56 yards was much greater than their other gains.

The **mode** is another measure of central tendency that tells us the number that occurred the most often in your data set. When looking for the mode, there can be more than one mode or no mode. The mode can tell us the most popular choice.

The Bears threw the ball to the following jersey numbers in the third quarter: 5, 6, 6, 3 and 4. You can see that there was only one receiver that had the ball thrown to him more than once. The mode of this data set would be 6. The Bears receiver #6 was the most popular choice to throw the ball to in the third quarter.

The Ducks threw the ball to the following receivers: 12, 13, 15, 17, 19 and 20. You can see that none of these receivers caught more than one pass. This data set has no mode.

Entering the fourth quarter, the Bears had scored the following points: 6, 7, 3, 0, 7, 3, 7 and 3. You can see there are two values that repeat three times each. The mode of this data set is both 3 and 7, which can sometimes be referred to as **bimodal**. This means that the most popular scoring values for the Bears were 3 and 7.

The last measure of central tendency is the **range**. The range is the difference between the highest and lowest values. Simply put, find the largest and smallest numbers and then subtract them. The range tells us the distance between the values in our data set.

At the end of the game, the Ducks' kickers had kicked field goals of 10, 14, 17, 19, 21 and 30 yards. Find the range. The smallest value is 10 and the largest value is 30. To calculate the range, subtract the two values: 30 - 10 = 20. The range of this data set is 20.

Let's put our new skills into practice with an example. Let's find the mean, median, mode and range of how many medals the U.S. has won over the last six summer Olympics.

To find the mean of this data set, we would add 104 + 110 + 101 + 94 + 101 + 108, and then divide by 6 because there are six values. So, 104 + 110 + 101 + 94 + 101 + 108 = 618. And, 618 ÷ 6 = 103. So, over the past six Summer Olympics, the United States has been awarded an average of 103 medals.

To find the median, we must first put the data in order from least to greatest. So our numbers in order from least to greatest would be 94, 101, 101, 104, 108, 110. The middle of this data set is actually two numbers (101 and 104). To find the median, we will need to add these two numbers together and divide by 2. 101 + 104 = 205, then dividing by 2 makes the median 102.5.

Looking at this data set, we can see that there is only one number that repeats itself, which is 101. This means that the mode of the data set is 101.

The range of this data set is found by taking the largest value (110) and the smallest value (94) and subtracting. So, 110 - 94 = 16. The range of this data set is 16.

In this lesson, we've discussed four **measures of central tendency**. These measurements can provide you with important information about a set of data. These four measures are the mean, median, mode and range.

- The
**mean**means average. To find it, add together all of your values and divide by the number of addends. - The
**median**is the middle number of your data set when in order from least to greatest. - The
**mode**is the number that occurred the most often. - The
**range**is the difference between the highest and lowest values.

Once you've gone through this video, you will have the ability to:

- Recall what measures of central tendencies are
- Identify the mean, median, mode and range
- Understand how we can find the mean, median, mode and range
- Recognize when to use the mean, median, mode and range

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
3 in chapter 13 of the course:

Back To Course

Math 102: College Mathematics15 chapters | 122 lessons | 13 flashcard sets

- Go to Logic

- Go to Sets

- Understanding Bar Graphs and Pie Charts 9:36
- How to Calculate Percent Increase with Relative & Cumulative Frequency Tables 5:47
- How to Calculate Mean, Median, Mode & Range 8:30
- Probability of Simple, Compound and Complementary Events 6:55
- Probability of Independent and Dependent Events 12:06
- Either/Or Probability: Overlapping and Non-Overlapping Events 7:05
- Probability of Independent Events: The 'At Least One' Rule 5:27
- How to Calculate Simple Conditional Probabilities 5:10
- Math Combinations: Formula and Example Problems 7:14
- How to Calculate the Probability of Combinations 11:00
- How to Calculate a Permutation 6:58
- How to Calculate the Probability of Permutations 10:06
- Go to Probability and Statistics

- Go to Geometry

- Computer Science 332: Cybersecurity Policies and Management
- Introduction to SQL
- Computer Science 203: Defensive Security
- GRE Information Guide
- Computer Science 310: Current Trends in Computer Science & IT
- Probability & Sample Space
- Polynomials Overview
- FTCE: Equations and Inequalities
- FTCE: Analyzing Data and Drawing Conclusions
- FTCE: Data Analysis & Visualization
- What is the ASCP Exam?
- ASCPI vs ASCP
- MEGA Exam Registration Information
- MEGA & MoGEA Prep Product Comparison
- PERT Prep Product Comparison
- MTLE Prep Product Comparison
- What is the MTLE Test?

- Complex Variables: Definitions & Examples
- Real Analysis: Completeness of the Real Numbers
- Ancient Israel: Social Structure & Political Organization
- Holden Caulfield in Catcher in the Rye: Character & Analysis
- Life Cycle of a Sunflower Lesson Plan
- The Ugly Duckling Lesson Plan
- Types of Conflict Lesson Plan
- Quiz & Worksheet - Determining the Number of Main Ideas in a Text
- Quiz & Worksheet - Mildred in Fahrenheit 451
- Order of Events in Narratives: Quiz & Worksheet for Kids
- Quiz & Worksheet - The Square Root Property
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Reading Comprehension
- Free Lesson Plans

- Fundamentals of Nursing Syllabus Resource & Lesson Plans
- Holt McDougal Economics - Concepts and Choices: Online Textbook Help
- Advanced Excel Training: Help & Tutorials
- Algebra I Textbook
- Building & Launching a Successful Team
- UExcel Workplace Communications with Computers Flashcards
- Remote Connections: Help and Review
- Quiz & Worksheet - Heterozygote Advantage
- Quiz & Worksheet - Nature vs. Nurture Debate
- Quiz & Worksheet - Credit Protection
- Quiz & Worksheet - Lysogenic Cycle of a Virus
- Quiz & Worksheet - Structure of the State Court System

- What Is a Graduated Cylinder? - Definition, Uses & Function
- Ethnic Groups in Argentina
- 7th Grade Arizona Science Standards
- NGSS Assessment Boundaries & Rubric
- Special Education Resources for Parents
- What Is the Common Core Standards Initiative?
- Finding Illinois TAP Testing Centers
- Average ELM Test Scores
- Egg Drop Experiment Lesson Plan
- Cause and Effect Lesson Plan
- AP Macroeconomics Exam: Tips for Short Free-Response Questions
- Lewis and Clark Lesson Plan

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject