Back To Course

Supplemental Math: Study Aid1 chapters | 19 lessons

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Log in here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*DaQuita Hester*

DaQuita has taught high school mathematics for six years and has a master's degree in secondary mathematics education.

Dilations are transformations that change figures in specific ways. Learn about these changes and how to complete dilations here. Then test your understanding with a quiz.

Have you ever gone to the movies and wondered where the movie was being projected from? How did the person in the back office get the film to fit perfectly on the huge screen? Well, if you didn't already know, the process used to get films to fit a movie screen is a perfect example of how dilations are used in real life.

A **dilation** is a transformation that changes the size of a figure. It can become larger or smaller, but the shape of the figure does not change. To complete a dilation, two things are needed. The first is a center point (or fixed point), which is usually only mentioned when the dilation must be drawn.

The second is a **scale factor** or ratio, which is often represented by the variable ** r**. Here, you can see how this relates to the everyday movie experience. The light beam would be the center point, the film strip would be the pre-image, and the movie displayed on the big screen would be the image.

When completing dilations, we often use the terminology from the above example. The original figure is referred to as the pre-image and the newly dilated figure, denoted with prime marks, is called the image. In this example, our pre-image is triangle ABC, and it is dilated to produce the image of triangle A'B'C'.

Knowing the scale factor allows you to predict what the image will look like after the dilation. If the absolute value of the scale factor is less than 1, then the image will be smaller than the pre-image. If the absolute value of the scale factor is greater than 1, then the image will be larger than the pre-image. Additionally, a negative scale factor causes the dilation to rotate 180 degrees.

Dilations can occur both on a coordinate plane and not on a coordinate plane. Let's take a look at each.

Without a coordinate plane, your primary goal will be to calculate the segment length of a dilated image. A general formula to use is ** Image = (Pre-Image)*|Scale Factor|** . In other words, multiply the pre-image by the absolute value of the scale factor. We must use absolute value because lengths should always be positive (you cannot have a negative length or distance).

For our first example, let AB = 8 and let's dilate it by a scale factor of -2. The absolute value of this scale factor is positive 2, which is larger than 1. Therefore, we can predict that segment A'B' will be larger than segment AB. Using the formula above, we see that A'B' = (8)*(2) = 16.

In our second example, we will use the same pre-image, but this time, we will dilate it by a scale factor of .25. The absolute value of this scale factor is .25, which is less than 1. With this, we can predict that segment A'B' will be smaller than segment AB. Once again, to find the length of A'B', we will multiply by the absolute value of the scale factor. Therefore, A'B' = (8)*(.25) = 2.

Now, when completing dilations on a coordinate plane, your primary goal will be to find the coordinates of the image. Since we are not finding the length of segments, we do not need to multiply by the absolute value of the scale factor. Instead, just multiply each coordinate by the scale factor. However, we must still use the absolute value to predict whether the image will increase or decrease in size. For the examples in this lesson, we will use the origin (0, 0) as our center point. Let's do an example.

Let D (2, -2) and E (6, -4) be the coordinates for our pre-image and let's dilate segment DE with a scale factor of .5. To complete this, we will multiply each coordinate by .5. In doing so, we see that the coordinates for our image are D' (1, -1) and E' (3, -2). We can also see that our image is smaller than our pre-image, since the absolute value of our scale factor is less than 1.

For our second example, let's use the same pre-image and dilate it with a scale factor of -2. Since this scale factor is negative, our image will be a 180-degree rotation of the pre-image. Because absolute values are always positive, the absolute value of this scale factor is positive 2, causing our image to be twice as large as the pre-image. To determine the new coordinates, we will multiply points D and E by -2 to get D' (-4, 4) and E' (-12, 8), like you see here.

**Dilations** are transformations that change the size of the figure. The scale factor will help you determine whether the image will be smaller or larger than the pre-image. To complete dilations, multiply the coordinates by the scale factor or multiply the side lengths by the absolute value of the scale factor.

- Dilation: a transformation that changes the size of a figure
- Scale factor: a ratio
- General formula to use to calculate the segment length of a dilated image: Image = (Pre-Image)*|Scale Factor|

Watch and read through the entire lesson so that you can easily:

- Describe the characteristics of a dilation
- Name the two things necessary to complete a dilation
- Understand what your primary goals would be when completing dilations on a coordinate plane or without a coordinate plane

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Log in here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
18 in chapter 1 of the course:

Back To Course

Supplemental Math: Study Aid1 chapters | 19 lessons

- Less Than Symbol in Math: Problems & Applications 4:10
- What are 2D Shapes? - Definition & Examples 4:35
- Trapezoid: Definition, Properties & Formulas 3:58
- What is Surface Area? - Definition & Formulas 5:56
- Using Parentheses in Math: Rules & Examples 3:58
- Universal Set in Math: Definition, Example & Symbol 6:03
- Complement of a Set in Math: Definition & Examples 5:59
- Zero Exponent: Rule, Definition & Examples 4:32
- Quotient Of Powers: Property & Examples 4:58
- What is Simplest Form? - Definition & How to Write Fractions in Simplest Form 5:49
- What is Slope? - Definition & Formulas 7:10
- Skewed Distribution: Examples & Definition 5:09
- Change Of Base Formula: Logarithms & Proof 4:54
- Transformations in Math: Definition & Graph 6:27
- What is Translation in Math? - Definition, Examples, & Terms 4:23
- Fixed Interval: Examples & Definition 4:00
- Scatterplot and Correlation: Definition, Example & Analysis 7:48
- Dilation in Math: Definition & Meaning 5:30
- Go to Overview of Math Concepts

- SIE Exam Study Guide
- Indiana Real Estate Broker Exam Study Guide
- Grammar & Sentence Structure Lesson Plans
- Foundations of Science Lesson Plans
- Career, Life, & Technical Skills Lesson Plans
- Business Costs, Taxes & Inventory Valuations
- Using Math for Financial Analysis
- Assessments in Health Education Programs
- Governmental Health Regulations
- Understanding Health Education Programs
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- Saadat Hasan Manto: Biography & Works
- What is an Agile Environment? - Definition & Example
- Assessing a Patient's Nutritional & Gastrointestinal Status
- States Rights & the Civil War
- American Government Project Ideas for High School
- Supreme Court Case Project Ideas
- Letter E Activities
- Quiz & Worksheet - Japanese Industrialization
- Quiz & Worksheet - Confucian Virtue Ethics
- Quiz & Worksheet - Achievements of President Jackson
- Quiz & Worksheet - Catherine Earnshaw
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Reading Comprehension | A Guide for Teaching Reading
- Expert Advice on Bullying for Teachers | Bullying Prevention in Schools

- CLEP Principles of Management: Study Guide & Test Prep
- Intro to Astronomy: Help and Review
- Algebra II Curriculum Resource & Lesson Plans
- Common Core Math Grade 8 - Functions: Standards
- Math 102: College Mathematics
- CLEP Social Sciences and History: The Hellenistic Age and Macedonia
- Research with Human Participants
- Quiz & Worksheet - The Bantu People
- Quiz & Worksheet - Anne of Cleves
- Quiz & Worksheet - Detective Fiction
- Quiz & Worksheet - Static Friction
- Quiz & Worksheet - Friction

- Neuromancer by William Gibson: Synopsis, Characters & Analysis
- Factors That Influence Sexual Decisions
- TExES Core Subjects 4-8 Exam Dates & Registration
- How to Pass Algebra 2
- Business Writing Training
- Teacher Appreciation Day Ideas
- What Does Redshirt Mean in Kindergarten?
- What is Credit Recovery in High School?
- How to Pass the Texas Real Estate Exam
- Writing Center Resources
- Behavior Rubric Examples
- Common Core State Standards in Ohio

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject