Back To Course

6th-8th Grade Math: Practice & Review55 chapters | 469 lessons

Are you a student or a teacher?

Start Your Free Trial To Continue Watching

As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Free 5-day trial
Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

In this video lesson, you will learn what it means to be divisible. Also, you'll see what numbers are divisible by 2, 3, and 4. You will also learn how you can check if something is divisible by these numbers.

What is divisibility? **Divisibility** is being able to be divided equally by a certain number. Think of sharing a bunch of candies that you have with your friends. If you have 3 friends and 3 candies, then you can give each friend 1 candy. Everyone gets an equal share. In math, we call this divisibility by 3. If you can't give your friends an equal share, then we say we don't have divisibility by 3.

We also use the word 'divisible.' We will usually say that something is divisible by something else. So, we will say that 3 is divisible by 3 because you can divide 3 candies by 3 friends equally. Remember what the symbol looks like for division? Yes, it is a horizontal line with a dot on top and a dot on the bottom. In this video lesson, we will look at what numbers can be divided by 2, 3, and 4. Are you ready to begin?

Let's stick to our sharing candies with friends example. In this case, divisibility by 2; we have 2 friends that we want to share candies with. Can you think of a number of candies that can be divided equally between these two friends? Is it 2? Yes, if you have 2 candies, you can definitely share the 2 candies equally between your 2 friends.

How many candies would each friend get? 1. So, 2 is divisible by 2, and 2 divided by 2 equals 1 since that is the number of candies that each friend got. Think of splitting the number of candies you have evenly into 2 groups. If you can do that, then the number is divisible by 2.

What's another number that is divisible by 2? Let's try 4. How can you divide four candies equally between 2 friends? Each friend can get 2 candies. So, we have 4 divided by 2 is 2. What other numbers have divisibility by 2? 6, 8, 10, 12, and so on. Do you see a pattern? Yes, each number is the previous number plus 2. You can continue this pattern to find even more numbers that are divisible by 2.

Let's continue on to the number 3. Now you have 3 friends. How many candies do you need so that you can share them equally between your friends? The first number is 3, since this means that each friend will get 1 candy each. So, 3 is divisible by 3. 3 divided by 3 is 1.

What's another number? 6. How many candies will each friend get? The answer is 2. So, 6 is divisible by 3. 6 divided by 3 is 2. What other numbers are there? 9, 12, 15, 18, and so on. Do you see a pattern here, too? Yes, it is very similar to the pattern for divisibility by 2, except now we are adding 3 to each previous number.

Now, what about divisibility by 4? What do you think the pattern will be? Will it be 4, 8, 12, 16, and so on? Yes, you are right! We start with our first number that can be divided equally between 4 friends, 4 candies, and then we continue by adding 4 to each previous number. 4 divided by 4 is 1. 8 divided by 4 is 2. 12 divided by 4 is 3. And the pattern continues.

What did we learn? We learned that **divisibility** means being able to be divided equally by a certain number. In math, we also use the word 'divisible.' When we say 12 is divisible by 4, it means that we can split 12 candies evenly between 4 friends. In this video lesson, we saw the numbers that are divisible by 2, 3, and 4. We learned that they all have a pattern.

For divisibility by 2, we start with the number 2 and then continue by adding 2 to each previous number. We get 2, 4, 6, 8, 10, etc. For divisibility by 3, we start with 3 and then we keep adding 3 to each previous number. We get 3, 6, 9, 12, etc. For divisibility by 4, we begin with 4 and then continue adding 4 to each previous number. We get 4, 8, 12, 16, etc.

After this lesson is done you should be able to:

- State the meaning of
*divisibility* - Recall how to find the divisibility patterns for 2, 3 and 4

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackDid you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
1 in chapter 2 of the course:

Back To Course

6th-8th Grade Math: Practice & Review55 chapters | 469 lessons

- OAE Prekindergarten Subtests I & II (036/037): Study Guide & Practice
- NES Essential Academic Skills: Study Guide & Practice
- OAE Foundations of Reading (090): Study Guide & Practice
- OSAT School Psychologist Exam (CEOE) (033): Study Guide & Practice
- Praxis Physical Education - Content & Design (5095): Study Guide & Practice
- Exercise & Nutrition
- Early Childhood Development Overview
- Overview of Culture
- Basic Instructional Strategies for Physical Education
- Careers in Healthcare
- AFOQT Cost
- What Does the HESI A2 Nursing Exam Consist of?
- How to Learn Pharmacology for NCLEX
- What Are Considered Higher-Level Questions on the NCLEX?
- How to Study for NCLEx in 2 Weeks
- How Hard Is the ASVAB
- How Long is the HESI A2 Nursing Exam?

- Gender Identity Discrimination in the Workplace: Definition, Laws & Cases
- Teaching Math to Students with Autism
- Aerobic Gram-Positive Bacilli: Characteristics, Types & Examples
- Income Elasticity of Demand in Microeconomics
- What Are the Benefits of Hiring Veterans?
- Practical Application: Creating an Inclusive Workplace Environment for Veterans Infographic
- How to Accommodate Religious Dietary Restrictions for Your Employees
- Veterans in the Workplace: Work Style & Characteristics
- Quiz & Worksheet - Phonics Instruction
- Quiz & Worksheet - Effects of Disabilities on Self & Others
- Quiz & Worksheet - Concept Generalization Teaching Methods
- Quiz & Worksheet - Parental Involvement in IEPs
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies

- Comprehensive English: Tutoring Solution
- Accuplacer Math: Advanced Algebra and Functions Placement Test Study Guide
- Algebra II: Credit Recovery
- Using Customer Feedback to Improve Service
- Soft Skills for Engineers
- ScienceSaurus Student Handbook Grades 6-8: Designing Your Own Investigations
- Cambridge Pre-U Mathematics: Absolute Value
- Quiz & Worksheet - Academic Art vs. Folk Art
- Quiz & Worksheet - Characteristics & Structure of Sodium Chloride
- Quiz & Worksheet - Relaxation through Movement
- Quiz & Worksheet - Emotional or Behavioral Disorders in Students
- Quiz & Worksheet - Bug Bites & Allergic Reactions First Aid

- Chemiosmosis in Photosynthesis & Respiration
- Cubes: Lesson for Kids
- Romeo and Juliet Act 4 Lesson Plan
- Experiments with Magnets for Kids
- GED Science: Reading Diagrams
- How Long Does it Take to Learn French?
- What GPA Do Colleges Look At?
- Cell Analogy Project Ideas
- NATA Certification Requirements
- Math Riddles for Adults
- Romeo and Juliet Act 5 Lesson Plan
- A Christmas Carol Lesson Plan

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject