Back To Course

College Algebra: Help and Review27 chapters | 229 lessons | 1 flashcard set

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

In this video lesson, you will learn how to divide and take the reciprocal of any rational expression. Learn the one easy step you take to be able to find your answer quickly and easily.

In this video lesson, we talk about **rational numbers**. What are they? They are numbers that can be written as the fraction of two integers. Remember that integers are whole numbers, both positive and negative. One way to think about rational numbers is when you want to share a certain number of things with a group of people, you have to divide what you have by the number of people. The math you get is a rational number.

For example, splitting 4 donuts among 3 people gives you 4/3, which is a rational number. Rational numbers include both fractions and your whole numbers because you can rewrite your whole numbers as a fraction being divided by 1. Your **rational expressions**, then, are math statements with rational numbers in them. So 4/3 by itself is both a rational number and a rational expression. (4/3) / (2/3) is a rational expression because it is a math statement with rational numbers in it.

You might be looking at that last rational expression and wondering how in the world you would evaluate that kind of problem. What you are seeing is the division of two rational numbers. In this case, we see a fraction being divided by another fraction.

How do we evaluate this kind of problem? We evaluate it by turning our division problem into a multiplication by applying the one easy step of flipping the fraction we are dividing by. In our problem, the fraction we are dividing by is 2/3. We flip it by moving the denominator to the numerator and moving the numerator to the denominator. So 2/3 flipped becomes 3/2.

Now we can change our division into multiplication. So (4/3) / (2/3) turns into (4/3) * (3/2). Do we know how to multiply fractions? Yes, we simply multiply across. We multiply the numerators together, and we multiply our denominators together. So (4/3) * (3/2) becomes 12/6. Now we look at what we got and see if we can simplify it more. Yes, we can. 12/6 simplifies to 2. Our final answer is 2.

How can we remember this process? Well, if you think of a division problem as having an upper part and a lower part, then you can think of the lower part as being opposite the upper part. If the lower part is opposite, then to fix it, we just flip everything around. What is on top goes on the bottom, and what is on the bottom goes on the top. We only do the flipping on the lower part of our division problem. After we flip, there is no need for the division because we've made things right. We can now multiply.

Taking the **reciprocal** is very closely related to division because it is 1 divided by our number. For example, the reciprocal of 4 is 1/4. This is easy to do when we have whole numbers. But what if we have a rational number that is a fraction? How do we take the reciprocal of one of these? For example, how do we take the reciprocal of (4/3)? We use the definition of reciprocal and we do 1 divided by our number. We get 1 / (4/3).

Now what? Well, we use what we know about dividing rational numbers and we flip the bottom rational number so that we can turn our problem into a multiplication problem. We get 1 * (3/4). Our answer, then, is 3/4. The reciprocal of 4/3 is 3/4. Do you notice something interesting here? Yes; the reciprocal of our rational number is simply the flipped version. To make it easy on yourself, just remember that the reciprocal of any rational number is simply the flipped version.

Let's look at some examples. The reciprocal of 5/4 is 4/5, the flipped version. Notice that the denominator is now in the numerator and the numerator is in the denominator.

What do you think the reciprocal of 6/7 is? That's right; it is 7/6.

What about division? How would you divide 9 by 1/3? 9 / (1/3). We flip the fraction in the denominator so we can turn it into a multiplication problem. We get 9 * (3/1). Our answer, then, is 27.

One more. (1/5) / (1/4). What do we do? Yes, we flip the bottom fraction and then turn the division into multiplication. (1/5) * (4/1). What does this equal? Multiplying straight across, we get 4/5. Our answer is 4/5.

Let's review what we've learned now. We learned that a **rational number** is a number that can be written as the fraction of two integers. A **rational expression** is a math statement with a rational number in it.

If we are dividing a rational number that happens to be a fraction, we flip the bottom fraction, the fraction we are dividing by so we can turn the problem into a multiplication problem. We then go ahead and multiply straight across. Since the **reciprocal** of a number is 1 divided by the number, the reciprocal of a rational number that is a fraction is simply the flipped version of it.

By successfully finishing this lesson, you can expand your ability to:

- Identify a rational expression
- Solve a division problem that includes rational numbers
- Find the reciprocal of a fraction

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
4 in chapter 16 of the course:

Back To Course

College Algebra: Help and Review27 chapters | 229 lessons | 1 flashcard set

- Multiplying and Dividing Rational Expressions: Practice Problems 4:40
- Practice Adding and Subtracting Rational Expressions 9:12
- Rational Equations: Practice Problems 13:15
- Division and Reciprocals of Rational Expressions 5:09
- Solving Equations of Direct Variation 5:12
- Solving Equations of Inverse Variation 5:13
- Go to Working with Rational Expressions

- Go to Fractions

- Go to Factoring

- AFOQT Information Guide
- ACT Information Guide
- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- FTCE Middle Grades Math: Connecting Math Concepts
- Social Justice Goals in Social Work
- Developmental Abnormalities
- Overview of Human Growth & Development
- ACT Informational Resources
- AFOQT Prep Product Comparison
- ACT Prep Product Comparison
- CGAP Prep Product Comparison
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison

- Cognition: Theory, Overview
- History of Sparta
- Realistic vs Optimistic Thinking
- How Language Reflects Culture & Affects Meaning
- Overview of Data Types in Java
- Managing Keys in Mobile Ad-Hoc Networks
- Using OpenStack for Building & Managing Clouds
- Quiz & Worksheet - Frontalis Muscle
- Octopus Diet: Quiz & Worksheet for Kids
- Logical Thinking & Reasoning Queries: Quiz & Worksheet for Kids
- Quiz & Worksheet - Fezziwig in A Christmas Carol
- Analytical & Non-Euclidean Geometry Flashcards
- Flashcards - Measurement & Experimental Design
- Noun Worksheets
- Classroom Management Strategies | Classroom Rules & Procedures

- Principles of Business Ethics: Certificate Program
- UExcel Contemporary Mathematics: Study Guide & Test Prep
- Introduction to World Religions: Certificate Program
- Psychology: High School
- Precalculus for Teachers: Professional Development
- 6th-8th Grade Math: Consumer Math
- Major Belief Systems World History Lesson Plans
- Quiz & Worksheet - Extrinsic Causes of Restrictive Lung Disease
- Quiz & Worksheet - Limited Liability Partnership Pros & Cons
- Quiz & Worksheet - Patterns of Hallucinogenic Drug Abuse
- Quiz & Worksheet - Tax Structure and Liability of Business Partnerships
- Quiz & Worksheet - Impact of Inflation and Fraud on Older Adults

- What is the Difference Between Legal & Ethical Standards?
- How Mathematical Models are Used in Art
- Accessing Results from the QTS Numeracy Skills Test
- Plant Experiments for Kids
- Texas Teacher Online CPE Training & Professional Development
- Top 5 Education Documentaries
- Texas Science Standards
- Constellations for Kids: Projects & Activities
- Volleyball Lesson Plan
- How to Pass the Bar Exam
- New Jersey Common Core State Standards
- 3rd Grade Math Centers

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject