Ecological Succession: From Pioneer to Climax Communities

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: How Introduced and Invasive Species Alter Ecological Balance

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
 Replay
Your next lesson will play in 10 seconds
  • 0:05 Ecological Succession
  • 2:13 Chaparral Ecosystems
  • 4:12 Secondary Succession
  • 6:25 Primary Succession
  • 8:19 Lesson Summary
Add to Add to Add to

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Login or Sign up

Timeline
Autoplay
Autoplay

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Joshua Anderson
Just as people grow and change so, too, do ecosystems. Watch this lesson to learn about ecological succession from the beginning stages of development to a community's ultimate destination, or climax.

Ecological Succession

Most of the time, when we talk about an ecosystem or habitat, we assume that it is stable and not changing very much; however, this is not always the case in nature. Granted, some habitats may remain relatively unchanged for hundreds or even thousands of years. However, there are others that undergo dramatic changes every few years. The causes of these changes can be natural occurrences, which include fire, floods, volcanic eruptions, tsunamis, and glacial retreat. Sometimes the changes are caused by human activities, such as logging, dam building, and agricultural use. In either case, if the change is severe enough to strip away the existing vegetation or expose a new landscape, species will colonize the disturbed area and then likely be replaced by other species. Over ecological time, the area may experience several transitions in species composition. This process by which the species structure of an ecological community changes over time is called ecological succession.

There are two basic types of ecological succession, which are categorized mainly based on how many nutrients - or lack thereof - are already present in the soil after the disturbance. For instance, primary succession is succession that begins in an area where the soil has not yet formed. Examples of events that precede primary succession would be the formation of a new island by a volcanic eruption or the retreat of a glacier. Secondary succession is succession that begins after an event clears the community but leaves the soil intact. Examples of events that precede secondary succession would be wildfires and deforestation by clearcutting. Because the soil is intact when secondary succession begins, it often progresses much faster than primary succession, and, in fact, certain types of natural events, such as wildfires and floods, can add nutrients to the soil.

Photo of a chaparral biome in summer
Chaparral Biome Photo

Chaparral Ecosystems

A good example of secondary succession can be seen after a fire in a chaparral ecosystem, which is a type of ecosystem characterized by dense, evergreen shrubs; mild, rainy winters; and hot, dry summers. Actually, chaparral is a type of biome, or one of the world's major ecosystem types, that is classified according to its predominant vegetation and climate. The predominant vegetation in a chaparral ecosystem consists of woody evergreen shrubs. Small annual plants are also common but can only grow and survive during the rainy winter months. When the weather becomes dry, the annual plants dry up and die, which leaves only the woody shrubs and the occasional evergreen tree as the only live plants in the summer. Typical animals found in chaparral ecosystems include deer, small rodents and birds, lizards, snakes, and, of course, insects. The soil in chaparral ecosystems is very poor and often very rocky. This is partially due to the fact that the short growing season makes chaparral one of the less productive ecosystems, and most of the biomass produced is retained in the woody shrubs.

The combination of the hot, dry summers and abundance of dry vegetation makes chaparral ecosystems prone to fires. In fact, chaparral plants and animals are typically adapted to periodic fires. Most of the animals retreat to underground burrows that are deep enough to be insulated from the extremely hot fires that burn the dense shrubs that typically contain very flammable oils in their leaves. While the branches and leaves of the shrubs are very flammable and are quickly consumed by the fires, most chaparral shrubs store lots of nutrients in their root crowns that survive underground while the fire burns the exposed parts of the plants.

Secondary Succession

Anyway, back to secondary succession. In the winter following a chaparral fire, the shrubs re-sprout from their root crowns. However, the shrubs are slow-growing compared to annual species, so in the winter following a fire, the predominating vegetation will be soft-leafed annual plants that have an unusual amount of nutrients available to them in the form of ash from the burned vegetation as well as an abundance of sunlight without a canopy of bushes covering them.

Not only will the number of thriving annual plants be higher after a fire, but the number of species will also be significantly higher. This is due not only to the fact that there are more resources available but also because several plant species in chaparral biomes are so adapted to the cycle of periodic fires that their seeds are only able to sprout after a fire.

Photo of a chaparral ecosystem the winter after a fire
Chaparral Ecosystem After Fire

For example, the seeds of a native chaparral wildflower, called whispering bells, require smoke exposure to germinate. These annual plant species are sometimes called fire-followers because they are only seen in the first couple of years following a fire when they are a part of the dominant vegetation in a chaparral ecosystem. Some types of fire-followers require the removal of leaf litter or exposure to direct sunlight to germinate, which is why they're mostly seen after fires.

To unlock this lesson you must be a Study.com Member.
Create your account

Register for a free trial

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use Study.com

Become a Study.com member and start learning now.
Become a Member  Back
What teachers are saying about Study.com
Free 5-day trial

Earning College Credit

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it free for 5 days!
Create an account
Support