Factors Involved in Climate Change

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Natural Factors That Determine a Region's Climate

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:57 Changes in Solar Radiation
  • 1:57 Changes in Atmospheric…
  • 2:51 Changes in…
  • 4:21 Changes in Earth's Orbit
  • 6:45 Changes in the Earth's Surface
  • 8:09 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed Audio mode
Lesson Transcript
Instructor: Joanne Abramson

Joanne has taught middle school and high school science for more than ten years and has a master's degree in education.

Our Earth's climate has changed many times in her 4.5 billion year lifetime. Discover the multiple factors that influence these changes and test your understanding with a short quiz.

Earth's Changing Climates

Our Earth was born from a cloud of dust and space particles around 4.5 billion years ago. That's a really, really long time ago. During this long existence, the Earth's climate has changed many times. There have been periods when the Earth has been covered in ice over a kilometer thick. And there have been times when the Earth has been much warmer than it is today.

Over the last 650,000 years, the Earth's global temperature has gone up and down in a regular pattern. Scientists have linked these cycles in our Earth's climate to several factors, including changes in solar radiation, changes in atmospheric turbidity and changes in radiation-absorbing atmospheric gases. In addition to factors that change Earth's temperature globally, phenomena such as changes in the Earth's orbit and changes in the Earth's surface affect climates locally.

Changes in Solar Radiation

Just as the Earth experiences periodic changes, so does the Sun. And these changes in the Sun can lead to climate changes on Earth. A sunspot is, just like it sounds, a dark spot that sometimes appears on the sun's surface. Sunspots are the result of concentrations of the sun's magnetic field. This results in cooler surface temperatures and thus a darker color.

The increased magnetic activity of sunspots leads to greater solar radiation hitting the surface of our planet. Thus, high sunspot activity is associated with warmer climates on the surface of the Earth. As an example, the Maunder Minimum was a period from about 1645 to 1715 where very few sunspots were seen. Scientists theorize that this lack of sunspot activity is linked to the coldest period of the Little Ice Age, which lasted from around 1300 to 1870.

Changes in Atmospheric Turbidity

Atmospheric turbidity refers to the amount of tiny particles, such as water droplets, dust and smog, suspended in the air. Increased turbidity scatters the sun's rays. This makes it harder to see, but it also means that less direct solar radiation is hitting the Earth.

These tiny liquid or solid particles suspended in the atmosphere are also referred to as aerosols. Aerosols reflect incoming solar radiation, bouncing it back into space. As a result, less radiation makes it to the Earth's surface. So, an increase in atmospheric aerosols creates a cooling effect on the planet. If you look at this diagram, periods of high dust concentration in the atmosphere (the red graph at the bottom) coincide with lower global temperatures (the blue graph on the top).

High dust concentrations coincide with lower global temperatures
Graphs of climate and atmospheric turbidity

Changes in Radiation-Absorbing Gases

Certain gases in our atmosphere allow the radiation from the Sun to pass straight through to the Earth's surface. Some of this radiation is then bounced back off the planet. However, this time, since the Earth is nowhere near as warm as the Sun, the radiation is less intense with a longer wavelength. These same gases that just let the Sun's radiation through now reflect the longer wavelength radiation back to Earth, trapping the warmth within the atmosphere.

This is known as the natural greenhouse effect, the warming of the Earth's surface and atmosphere through the trapped energy of the Sun. These natural greenhouse gases include water vapor, carbon dioxide and methane. The gases in the atmosphere are serving the same purpose as greenhouse glass; they are letting in the sun's warmth and trapping it inside, so that the greenhouse (our planet) heats up.

The greenhouse effect is a good thing. Without it, our planet would be a cold and inhospitable place. The greenhouse gasses go through a natural cycle that coincide with the warming and cooling of our planet. We hear so much about greenhouse gases in the news lately because through factories, cars and the burning of fossil fuels, humans are dumping many more greenhouse gases into the atmosphere than can be considered natural. Because of this, our planet is heating up much quicker than would otherwise be expected.

Changes in Earth's Orbit

Other climate-changing factors do not necessarily affect the temperature of the entire planet. Nonetheless, these factors can cause significant changes in individual regions.

As I'm sure you remember from grade school, the Earth rotates on its own axis. At the same time that it is rotating, it also orbits the Sun. While you may expect Earth's rotation and orbit to always remain the same, it actually doesn't. Remember, the Earth is very, very old and has gone through many changes in its long life.

The Earth's obliquity refers to the angle of Earth's tilt on its rotational axis. Currently, the Earth is tilted at 23.4 degrees from straight up and down. Over a time period of 41,000 years, this angle travels from 22 degrees to 24.5 degrees. This change in tilt affects the climates of particular regions on the planet. The areas that begin to receive more direct sunlight as the Earth tilts will become warmer. The areas that start receiving less direct sunlight will cool down.

Eccentricity refers to the shape of the Earth's orbit around the Sun. Over a period of approximately 100,000 years, our Earth's orbit changes from almost circular to highly elliptical. Currently, our orbit is quite circular. When the Earth's orbit is very elliptical, either the Northern or the Southern Hemisphere boils in extremely hot summers and freezes in severely cold winters. The opposite hemisphere basks in warm summers and mild winters.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account