Feedback Inhibition: Definition & Example

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Methanogens: Definition, Classification & Examples

You're on a roll. Keep up the good work!

Take Quiz Watch Next Lesson
Your next lesson will play in 10 seconds
  • 0:01 Review of Enzymes
  • 1:23 Feedback Inhibition
  • 4:11 Examples
  • 5:25 Lesson Summary
Save Save Save

Want to watch this again later?

Log in or sign up to add this lesson to a Custom Course.

Log in or Sign up

Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor: Darla Reed

Darla has taught undergraduate Enzyme Kinetics and has a doctorate in Basic Medical Science

This lesson will review enzymes, substrates and products, then give a definition of feedback inhibition and discuss how it works. Some examples of feedback inhibition will also be discussed.

Review of Enzymes

Ever made a cup from clay? We can use this activity as a metaphor for enzymes, substrates, and products. What are enzymes? Enzymes are proteins that speed up the change of substrates into products. Substrates are cellular materials, rather like the clay. Products are what substrates become. Clay, representing substrate, can be shaped, heated, and glazed to make a useable cup, which represents the product. Pieces of the clay are removed or added where necessary to achieve the finished product, the cup.

The same thing happens to substrates - some chemical groups may be added or removed to make the final product. The enzyme binds its substrate at the active site and that is where substrate becomes product. There are many steps that the clay must go through to become a cup. A lump of clay is first molded into shape. The cup shape is just the first product. The cup is then fired to make it solid, then glazed to give it decoration. Products formed are often used as substrates for other enzymes.

At each step, a different product is formed and the substrate is changed from what it was before. The cell uses enzymes at each step to make the next product. Like clay, the amino acid threonine, for example, is shaped and changed by various enzymes in a stepwise process to make the amino acid isoleucine.

Feedback Inhibition

Enzymes are very important in speeding up product formation. The products of enzymes can have positive and negative effects on the cell and thus good or bad effects on an organism. Therefore, it is important that enzymes be regulated and stop product formation if and when they are told to do so.

Feedback inhibition, or end-product inhibition, is when a product in a pathway goes back and tells one of the previous enzymes to stop.

If you are making a lot of cups, eventually the room will be filled with finished cups. When you run out of space, you can think of the abundance of finished cups as telling you to stop, that you no longer need to shape the clay.

Cells use products to tell enzymes to slow down or stop changing substrate to product. But it's not just enzymes that products can act upon. Products can also bind factors (like repressor proteins) and prevent the transcription of genes that ultimately make the products, thus feedback inhibition can also extend to the genetic level.

Enzymes that are not properly regulated can lead to diseased states. Sialuria, for example, is a disorder that results from a disrupted enzyme regulation. The improper regulation can cause various problems, including upper respiratory infections, dehydration, upset stomach, seizures and learning disabilities. Normally, the enzyme causing this disorder is regulated through a mechanism known as feedback inhibition. Without this regulation, the disorder occurs.

Products that feed back and inhibit enzymes that are ultimately responsible for their formation bind a site other than the active site. This site is known as the allosteric site. After products bind to inhibit, the enzyme often changes its form and temporarily loses its ability to attach to a substrate.

There are also instances where different end products are required to stop enzyme activity, rather like a defensive lineman trying to tackle the guy with the ball. One person may slow down the guy with the ball, but not stop him. Sometimes it takes many defensive linemen jumping on the guy with the ball to completely halt his progress. Products in a pathway can gang up on enzymes in a similar manner, one slowing the enzyme and many completely halting the progress of product formation.

To unlock this lesson you must be a Member.
Create your account

Register to view this lesson

Are you a student or a teacher?

Unlock Your Education

See for yourself why 30 million people use

Become a member and start learning now.
Become a Member  Back
What teachers are saying about
Try it risk-free for 30 days

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Transferring credit to the school of your choice

Not sure what college you want to attend yet? has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

Create an account to start this course today
Try it risk-free for 30 days!
Create an account