Back To Course

College Algebra: Help and Review27 chapters | 229 lessons | 1 flashcard set

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*David Liano*

This lesson discusses how to locate the axis of symmetry of a parabola in the standard x-y coordinate plane. Learn how the vertex of the parabola relates to its axis of symmetry and how to determine the axis of symmetry from a quadratic equation.

The word symmetry implies balance. Symmetry can be applied to various contexts and situations. For instance, a marriage could be said to have symmetry if each spouse has an equal share in decision-making when it comes to money matters. But since such matters are not always clear cut, we will confine our discussion today to mathematical contexts.

Symmetry is found in geometry when a figure can be divided into two halves that are exact reflections of each other, as shown in Figure 1. These figures have line symmetry. If we were to fold each figure in half at the red lines (lines of symmetry), the two halves would lie exactly on top of each other.

In this lesson, our concern is the **symmetry of a parabola** in the x-y coordinate plane.

Figure 2 shows a parabola that has an **axis of symmetry** that lies on the y-axis. Notice that the vertex of this parabola is at the ordered pair (0, 0). A parabola's axis of symmetry always goes through the vertex of the parabola. In other words, it is a **vertical line** that goes through the x-coordinate of the vertex. Therefore, the equation of the axis of symmetry for this parabola is *x = 0*.

As in the geometric figures in Figure 1, if we fold the parabola at the y-axis, the two halves will lie exactly on top of each other. Parabolas always have perfect symmetry. The axis of symmetry of a parabola does not always lie on the y-axis. A parabola can have an axis of symmetry that is left or right of the y-axis, and the parabola can open upward, as in Figure 2, or it can open downward. Parabolas can also be shown as opening up to the left or right, but these types of parabolas are not considered functions and will not be a part of this lesson.

These parabolas each exhibit an axis of symmetry that does not lie on the y-axis. This parabola in Figure 3 has an axis of symmetry that intersects the x-axis at -2. Therefore, the equation of this axis of symmetry is x = -2. The parabola in Figure 4 has an axis of symmetry that intersects the x-axis at 3. Therefore, the equation of this axis of symmetry is x = 3.

A parabola is the graph of a quadratic equation. Here is the form of a **quadratic equation**:

Each of the parabolas in Figure 3 and Figure 4 can be expressed as a quadratic equation. The quadratic equation for the parabola in Figure 3 is *x^2 + 4x + 6*. The quadratic equation for the parabola in Figure 4 is *-x^2 + 6x - 8*. We can also use these quadratic equations to find the axes of symmetry of the parabolas by applying them to the equation of the axis of symmetry.

Here is the equation for the **axis of symmetry**:

Let's look at the quadratic equation for the parabola in Figure 3. The a-value is 1 and the b-value is 4. The equation of the axis of symmetry is:

*x = -4/2(1) = -4/2 = -2*

This is the same value for the axis of symmetry that was exhibited by the graph. Now let's look at the quadratic equation for the parabola in Figure 4. The a-value is -1 and the b-value is 6. Therefore, the equation of the axis of symmetry is:

*x = -6/2(-1) = -6/-2 = 3*

Again, this is the same axis of symmetry exhibited by the graph.

The axis of symmetry gives us the x-coordinate of the vertex. What about the y-coordinate of the vertex? Just plug in the value of the x-coordinate into the quadratic equation of the parabola. The parabola in Figure 3 has its vertex at x = -2. If we plug this into the quadratic equation of a parabola, we will get the y-coordinate of 2:

*y = (-2)^2 + 4(-2) + 6 = 4 - 8 + 6 = 2*

The ordered pair of the vertex is (-2, 2).

We can also exhibit symmetry in a table of values. Let's use the parabola in Figure 3 again. This table shows ordered pairs for the parabola in Figure 3.

x | y |
---|---|

-5 | 11 |

-4 | 6 |

-3 | 3 |

-2 |
2 |

-1 | 3 |

0 | 6 |

1 | 11 |

The vertex is at ordered pair (-2, 2). If we move an equal number of units on either side of the axis of symmetry (x = -2), the y-coordinates will be the same. For instance, the ordered pairs (-4, 6) and (0, 6) both are two units away from the axis of symmetry and have the same y-coordinate of 6.

Let's review.

Characteristics of the axis of symmetry include the following:

- It is the line of symmetry of a parabola and divides a parabola into two equal halves that are reflections of each other about the line of symmetry.
- It intersects a parabola at its vertex.
- It is a vertical line with the equation of x = -b/2a.

Possible results of completing this lesson include the ability to:

- Determine whether something is symmetrical
- State the equation for determining the axis of symmetry
- Identify the line of symmetry of a parabola
- Calculate the vertex of a parabola

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
8 in chapter 7 of the course:

Back To Course

College Algebra: Help and Review27 chapters | 229 lessons | 1 flashcard set

- What is a Parabola? 4:36
- Parabolas in Standard, Intercept, and Vertex Form 6:15
- How to Factor Quadratic Equations: FOIL in Reverse 8:50
- Factoring Quadratic Equations: Polynomial Problems with a Non-1 Leading Coefficient 7:35
- How to Solve a Quadratic Equation by Factoring 7:53
- How to Use the Quadratic Formula to Solve a Quadratic Equation 9:20
- How to Solve Quadratics That Are Not in Standard Form 6:14
- Find the Axis Of Symmetry: Equation, Formula & Vertex 6:11
- Go to Using FOIL, Graphing Parabolas & Solving Quadratics to Factor: Help & Review

- Go to Fractions

- Go to Factoring

- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- U.S. Politics & Civics Lesson Plans
- US History - Civil War: Lesson Plans & Resources
- iOS Data Analysis & Recovery
- Acquiring Data from iOS Devices
- Foundations of Digital Forensics
- Introduction to Mobile Forensics
- Examination of iOS Devices
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison
- TACHS Prep Product Comparison
- Top 50 Blended Learning High Schools
- EPPP Prep Product Comparison
- NMTA Prep Product Comparison
- Study.com NMTA Scholarship: Application Form & Information

- History of Sparta
- Realistic vs Optimistic Thinking
- How Language Reflects Culture & Affects Meaning
- Logical Thinking & Reasoning Questions: Lesson for Kids
- Human Geography Project Ideas
- Asian Heritage Month Activities
- Types of Visualization in Python
- Quiz & Worksheet - Frontalis Muscle
- Octopus Diet: Quiz & Worksheet for Kids
- Quiz & Worksheet - Fezziwig in A Christmas Carol
- Quiz & Worksheet - Dolphin Mating & Reproduction
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Common Core Math Standards - What is Common Core Math?
- High School Science Worksheets and Printables

- AP English Language: Tutoring Solution
- AP European History: Help and Review
- Stress Management in Psychology: Help & Review
- Holt McDougal Physics: Online Textbook Help
- Common Core ELA Grade 7 - Language: Standards
- The Female Reproductive System Study Guide
- Introduction to Poetry: Help & Review
- Quiz & Worksheet - Invertebrate Chordates
- Quiz & Worksheet - Weak Electrolytes
- Quiz & Worksheet - Muscles of the Chest and Abdomen
- Quiz & Worksheet - Enzyme Inhibitors
- Quiz & Worksheet - Constitutional Checks & Balances on the Supreme Court

- Newton's Laws and Weight, Mass & Gravity
- Seminole Tribe: History, Facts & Culture
- 2nd Grade Florida Science Standards
- GED Science: Reading Passages
- Earth Science Projects
- Homeschooling in South Dakota
- Youth Suicide Prevention Programs
- Is the TExES PPR Exam Hard?
- Weather Science Experiments for Kids
- Minnesota Science Standards
- Homeschooling in Wyoming
- Homeschooling in California

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject